def proctree(r, i=1): tg.map_stree(g, r) taxids = set() for lf in r.leaves(): taxids.update(lf.taxid_rootpath) taxg = tg.taxid_new_subgraph(g, taxids) verts = taxg.new_vertex_property('bool') edges = taxg.new_edge_property('bool') # add stree's nodes and branches into taxonomy graph tg.merge_stree(taxg, r, i, verts, edges) # next, add taxonomy edges to taxg connecting 'incertae sedis' # leaves in stree to their containing taxa for lf in r.leaves(): if lf.taxid and lf.taxid in taxg.taxid_vertex and lf.incertae_sedis: taxv = taxg.taxid_vertex[lf.taxid] ev = taxg.edge(taxv, lf.v, True) if ev: assert len(ev)==1 e = ev[0] else: e = taxg.add_edge(taxv, lf.v) taxg.edge_in_taxonomy[e] = 1 # make a view of taxg that keeps only the vertices and edges traced by # the source tree gv = tg.graph_view(taxg, vfilt=verts, efilt=edges) gv.vertex_strees = taxg.vertex_strees gv.edge_strees = taxg.edge_strees # the following code sets up the visualization ecolor = taxg.new_edge_property('string') for e in taxg.edges(): est = taxg.edge_strees[e] eit = taxg.edge_in_taxonomy[e] if len(est) and not eit: ecolor[e] = 'blue' elif len(est) and eit: ecolor[e] = 'green' else: ecolor[e] = 'yellow' ewidth = taxg.new_edge_property('int') for e in taxg.edges(): est = taxg.edge_strees[e] if len(est): ewidth[e] = 3 else: ewidth[e] = 1 vcolor = taxg.new_vertex_property('string') for v in taxg.vertices(): if not taxg.vertex_in_taxonomy[v]: vcolor[v] = 'blue' else: vcolor[v] = 'green' vsize = taxg.new_vertex_property('int') for v in taxg.vertices(): if taxg.vertex_in_taxonomy[v] or v.out_degree()==0: vsize[v] = 4 else: vsize[v] = 2 pos, pin = tg.layout(taxg, gv, gv.root, sfdp=True, deg0=195.0, degspan=150.0, radius=400) for v in gv.vertices(): pin[v] = 1 for e in taxg.edges(): src = e.source() tgt = e.target() if not verts[src]: verts[src] = 1 pos[src] = [0.0, 0.0] vcolor[src] = 'red' if not verts[tgt]: verts[tgt] = 1 pos[tgt] = [0.0, 0.0] vcolor[tgt] = 'red' if not edges[e]: edges[e] = 1 ecolor[e] = 'red' ewidth[e] = 1.0 gv.wt[e] = 1.0 pos = gt.sfdp_layout(gv, pos=pos, pin=pin, eweight=gv.wt, multilevel=False) nodes = [] links = [] idx = {} xmin = min([ pos[x][0] for x in gv.vertices() ]) ymin = min([ pos[x][1] for x in gv.vertices() ]) for x in gv.vertices(): pos[x] = [pos[x][0]-xmin, pos[x][1]-ymin] for i,v in enumerate(gv.vertices()): idx[int(v)] = i taxid = gv.vertex_taxid[v] try: name = gv.vertex_name[v] except: name = gv.taxid_name(taxid) if taxid else ''#'node%s' % int(v) isleaf = v.out_degree()==0 d = dict(label=name, isleaf=isleaf, strees=list(gv.vertex_strees[v]), altlabel=name) if taxid: d['taxid'] = taxid ## if dist: d['dist'] = dist[v] if pos and pos[v]: x, y = pos[v] d['x'] = x; d['y'] = y d['fixed'] = True d['color'] = vcolor[v] d['size'] = vsize[v] nodes.append(d) for e in gv.edges(): source = idx[int(e.source())] target = idx[int(e.target())] strees = gv.edge_strees[e] d = dict(source=source, target=target, strees = list(strees), taxedge=bool(gv.edge_in_taxonomy[e])) d['color'] = ecolor[e] d['width'] = ewidth[e] links.append(d) return dict(nodes=nodes, links=links)
r.stree = stree tg.map_stree(g, r) taxids = set() for lf in r.leaves(): taxids.update(lf.taxid_rootpath) taxg = tg.taxid_new_subgraph(g, taxids) # taxg is a new graph containing only the taxids in stree # these properties will store the vertices and edges that are traced # by r verts = taxg.new_vertex_property('bool') edges = taxg.new_edge_property('bool') # add stree's nodes and branches into taxonomy graph tg.merge_stree(taxg, r, stree, verts, edges) # verts and edges now filter the paths traced by r in taxg # next, add taxonomy edges to taxg connecting 'incertae sedis' # leaves in stree to their containing taxa for lf in r.leaves(): if lf.taxid and lf.taxid in taxg.taxid_vertex and lf.incertae_sedis: taxv = taxg.taxid_vertex[lf.taxid] ev = taxg.edge(taxv, lf.v, True) if ev: assert len(ev) == 1 e = ev[0] else: e = taxg.add_edge(taxv, lf.v) taxg.edge_in_taxonomy[e] = 1
def build_json(choice): if choice == "1": ## Loads a graph with the OTT taxonomy taxonomy="ott" print "Loading OTT taxonomy into graph..." g = tg.load_taxonomy_graph('taxonomy/ott2.2/ott2.2.xml.gz') print "OTT taxonomy Graph loaded successfully." print "Loading ott-treecache file..." datafile = open('trees/ott-treecache.txt', 'r') #read in the treecache file print "Loaded." elif choice == "2": taxonomy="ncbi" print "Loading NCBI taxonomy into graph..." g = tg.load_taxonomy_graph('taxonomy/ncbi/ncbi.xml.gz') print "NCBI taxonomy Graph loaded successfully." print "Loading ncbi-treecache file..." datafile = open('trees/ncbi-treecache.txt', 'r') #read in the treecache file print "Loaded." data = [] errors = [] blacklist = [] ## Loop all of the entries in the treecache.txt file and assign them to data. for row in datafile: data.append(row) #print row ## Creates a Tree Blacklist that will ignore problematic trees that cause crashes based on strange formatting issues until then can be resolved. print "Loading tree blacklist..." tree_blacklist = open('trees/tree_blacklist.txt', 'r') #read in the tree blacklist file print "Loaded." ## Loop all of the entries in the tree_blacklist.txt file and assign them to blacklist. for tree in tree_blacklist: blacklist.append(tree.strip()) rowcount = 0 for row in data: #iterate through each unique stree id in the file allowing the code below to generate the graph, write the JSON and save the file active_tree = row.split(":") #split the row from treecache into tree id and newick string tree if active_tree[0] in blacklist: ## if a tree is in the blacklist, ignore it. print ("Tree %s is being ignored as it is black listed." % active_tree[0]) else: stree = int(active_tree[0]) # convert tree id string into int r = ivy.tree.read(active_tree[1].replace("?", "")) #read the tree, also replacing an extraneous ? characters leafcount = 0 r.ladderize() ivy.tree.index(r) for n in r: if n.isleaf: leafcount = leafcount + 1 v = n.label.split('_') n.snode_id = int(v[0]) n.taxid = int(v[1]) if (len(v)>1 and v[1] and v[1] != 'None') else None else: n.snode_id = int(n.label) if leafcount <= 5000: #check to prune trees that have more than 5000 leaves. They will not display correctly in graph form. try: #used to catch all errors from incorrectly formatted trees (ie: ? characters, and other issues) r.stree = stree ### ADD CODE HERE TO SKIP TREES WITH MORE THAN 5000 leaves tg.map_stree(g, r) taxids = set() for lf in r.leaves(): taxids.update(lf.taxid_rootpath) taxg = tg.taxid_new_subgraph(g, taxids) # taxg is a new graph containing only the taxids in stree # these properties will store the vertices and edges that are traced # by r verts = taxg.new_vertex_property('bool') edges = taxg.new_edge_property('bool') # add stree's nodes and branches into taxonomy graph tg.merge_stree(taxg, r, stree, verts, edges) # verts and edges now filter the paths traced by r in taxg # next, add taxonomy edges to taxg connecting 'incertae sedis' # leaves in stree to their containing taxa for lf in r.leaves(): if lf.taxid and lf.incertae_sedis: taxv = taxg.taxid_vertex[lf.taxid] ev = taxg.edge(taxv, lf.v, True) if ev: assert len(ev)==1 e = ev[0] else: e = taxg.add_edge(taxv, lf.v) taxg.edge_in_taxonomy[e] = 1 # make a view of taxg that keeps only the vertices and edges traced by # the source tree gv = tg.graph_view(taxg, vfilt=verts, efilt=edges) gv.vertex_strees = taxg.vertex_strees gv.edge_strees = taxg.edge_strees # the following code sets up the visualization ecolor = taxg.new_edge_property('string') for e in taxg.edges(): est = taxg.edge_strees[e] eit = taxg.edge_in_taxonomy[e] if len(est) and not eit: ecolor[e] = 'blue' elif len(est) and eit: ecolor[e] = 'green' else: ecolor[e] = 'yellow' ewidth = taxg.new_edge_property('int') for e in taxg.edges(): est = taxg.edge_strees[e] if len(est): ewidth[e] = 3 else: ewidth[e] = 1 vcolor = taxg.new_vertex_property('string') for v in taxg.vertices(): if not taxg.vertex_in_taxonomy[v]: vcolor[v] = 'blue' else: vcolor[v] = 'green' vsize = taxg.new_vertex_property('int') for v in taxg.vertices(): if taxg.vertex_in_taxonomy[v] or v.out_degree()==0: vsize[v] = 8 else: vsize[v] = 2 pos, pin = tg.layout(taxg, gv, gv.root, sfdp=True, deg0=195.0, degspan=150.0, radius=400) for v in gv.vertices(): pin[v] = 1 for e in taxg.edges(): src = e.source() tgt = e.target() if not verts[src]: verts[src] = 1 pos[src] = [0.0, 0.0] vcolor[src] = 'red' if not verts[tgt]: verts[tgt] = 1 pos[tgt] = [0.0, 0.0] vcolor[tgt] = 'red' if not edges[e]: edges[e] = 1 ecolor[e] = 'red' ewidth[e] = 1.0 gv.wt[e] = 1.0 pos = gt.sfdp_layout(gv, pos=pos, pin=pin, eweight=gv.wt, multilevel=False) ### Use function in TreeGraph.py to parse Graph(gv) into JSON print "Generating JSON..." result = tg.graph_json(gv, pos=pos, ecolor=ecolor, ewidth=ewidth, vcolor=vcolor, vsize=vsize) result = result[1:] #strip the original { from the json so we can insert the time stamp date = time.strftime("%Y%m%d%I%M%S") # grab the system date for the filename and convert it to a string treeid = str(stree) # convert stree int into a string timestamp = "{\"timestamp\": \"%s\", " %date final_result = timestamp+result # add date to first line of json file for later parsing path = str(os.path.dirname(os.path.realpath(__file__))) path = path[:-8] path = "%s//%s/" % (path, taxonomy) # build the full path to write the file too filename = "%stree_%s.JSON" % (path, treeid) # build the full file_name for writing if not os.path.exists(path): ## if directory doesn't exist, create it. os.makedirs(path) f = open(filename, 'w') f.write(final_result) f.close print "Done." rowcount = rowcount + 1 except: # catch *all* exceptions e = sys.exc_info()[0] e = str(e) treeid = str(stree) print ("Error: %s</p>" % e) errorstring = "Error: " + e + " on Tree: " + treeid # rough hack to store trees with errors and the general error errors.append(errorstring) # store all of the error strings rowcount = rowcount + 1 continue ## continue converting the rest of the trees into JSON even if a specific tree has errors else: print "Tree has more than 5000 leaves. No graph will be generated." print "JSON Generation Complete." ## write the error strings to a log file for review later if errors: with open("error_log.txt", "w+") as error_log: pickle.dump(errors, error_log)
r.stree = stree tg.map_stree(g, r) taxids = set() for lf in r.leaves(): taxids.update(lf.taxid_rootpath) taxg = tg.taxid_new_subgraph(g, taxids) # taxg is a new graph containing only the taxids in stree # these properties will store the vertices and edges that are traced # by r verts = taxg.new_vertex_property('bool') edges = taxg.new_edge_property('bool') # add stree's nodes and branches into taxonomy graph tg.merge_stree(taxg, r, stree, verts, edges) # verts and edges now filter the paths traced by r in taxg # next, add taxonomy edges to taxg connecting 'incertae sedis' # leaves in stree to their containing taxa for lf in r.leaves(): if lf.taxid and lf.taxid in taxg.taxid_vertex and lf.incertae_sedis: taxv = taxg.taxid_vertex[lf.taxid] ev = taxg.edge(taxv, lf.v, True) if ev: assert len(ev)==1 e = ev[0] else: e = taxg.add_edge(taxv, lf.v) taxg.edge_in_taxonomy[e] = 1
def build_json(choice): if choice == "1": ## Loads a graph with the OTT taxonomy taxonomy = "ott" print "Loading OTT taxonomy into graph..." g = tg.load_taxonomy_graph('taxonomy/ott2.2/ott2.2.xml.gz') print "OTT taxonomy Graph loaded successfully." print "Loading ott-treecache file..." datafile = open('trees/ott-treecache.txt', 'r') #read in the treecache file print "Loaded." elif choice == "2": taxonomy = "ncbi" print "Loading NCBI taxonomy into graph..." g = tg.load_taxonomy_graph('taxonomy/ncbi/ncbi.xml.gz') print "NCBI taxonomy Graph loaded successfully." print "Loading ncbi-treecache file..." datafile = open('trees/ncbi-treecache.txt', 'r') #read in the treecache file print "Loaded." data = [] errors = [] blacklist = [] ## Loop all of the entries in the treecache.txt file and assign them to data. for row in datafile: data.append(row) #print row ## Creates a Tree Blacklist that will ignore problematic trees that cause crashes based on strange formatting issues until then can be resolved. print "Loading tree blacklist..." tree_blacklist = open('trees/tree_blacklist.txt', 'r') #read in the tree blacklist file print "Loaded." ## Loop all of the entries in the tree_blacklist.txt file and assign them to blacklist. for tree in tree_blacklist: blacklist.append(tree.strip()) rowcount = 0 for row in data: #iterate through each unique stree id in the file allowing the code below to generate the graph, write the JSON and save the file active_tree = row.split( ":" ) #split the row from treecache into tree id and newick string tree if active_tree[ 0] in blacklist: ## if a tree is in the blacklist, ignore it. print("Tree %s is being ignored as it is black listed." % active_tree[0]) else: stree = int(active_tree[0]) # convert tree id string into int r = ivy.tree.read(active_tree[1].replace( "?", "")) #read the tree, also replacing an extraneous ? characters leafcount = 0 r.ladderize() ivy.tree.index(r) for n in r: if n.isleaf: leafcount = leafcount + 1 v = n.label.split('_') n.snode_id = int(v[0]) n.taxid = int(v[1]) if (len(v) > 1 and v[1] and v[1] != 'None') else None else: n.snode_id = int(n.label) if leafcount <= 5000: #check to prune trees that have more than 5000 leaves. They will not display correctly in graph form. try: #used to catch all errors from incorrectly formatted trees (ie: ? characters, and other issues) r.stree = stree ### ADD CODE HERE TO SKIP TREES WITH MORE THAN 5000 leaves tg.map_stree(g, r) taxids = set() for lf in r.leaves(): taxids.update(lf.taxid_rootpath) taxg = tg.taxid_new_subgraph(g, taxids) # taxg is a new graph containing only the taxids in stree # these properties will store the vertices and edges that are traced # by r verts = taxg.new_vertex_property('bool') edges = taxg.new_edge_property('bool') # add stree's nodes and branches into taxonomy graph tg.merge_stree(taxg, r, stree, verts, edges) # verts and edges now filter the paths traced by r in taxg # next, add taxonomy edges to taxg connecting 'incertae sedis' # leaves in stree to their containing taxa for lf in r.leaves(): if lf.taxid and lf.incertae_sedis: taxv = taxg.taxid_vertex[lf.taxid] ev = taxg.edge(taxv, lf.v, True) if ev: assert len(ev) == 1 e = ev[0] else: e = taxg.add_edge(taxv, lf.v) taxg.edge_in_taxonomy[e] = 1 # make a view of taxg that keeps only the vertices and edges traced by # the source tree gv = tg.graph_view(taxg, vfilt=verts, efilt=edges) gv.vertex_strees = taxg.vertex_strees gv.edge_strees = taxg.edge_strees # the following code sets up the visualization ecolor = taxg.new_edge_property('string') for e in taxg.edges(): est = taxg.edge_strees[e] eit = taxg.edge_in_taxonomy[e] if len(est) and not eit: ecolor[e] = 'blue' elif len(est) and eit: ecolor[e] = 'green' else: ecolor[e] = 'yellow' ewidth = taxg.new_edge_property('int') for e in taxg.edges(): est = taxg.edge_strees[e] if len(est): ewidth[e] = 3 else: ewidth[e] = 1 vcolor = taxg.new_vertex_property('string') for v in taxg.vertices(): if not taxg.vertex_in_taxonomy[v]: vcolor[v] = 'blue' else: vcolor[v] = 'green' vsize = taxg.new_vertex_property('int') for v in taxg.vertices(): if taxg.vertex_in_taxonomy[v] or v.out_degree() == 0: vsize[v] = 8 else: vsize[v] = 2 pos, pin = tg.layout(taxg, gv, gv.root, sfdp=True, deg0=195.0, degspan=150.0, radius=400) for v in gv.vertices(): pin[v] = 1 for e in taxg.edges(): src = e.source() tgt = e.target() if not verts[src]: verts[src] = 1 pos[src] = [0.0, 0.0] vcolor[src] = 'red' if not verts[tgt]: verts[tgt] = 1 pos[tgt] = [0.0, 0.0] vcolor[tgt] = 'red' if not edges[e]: edges[e] = 1 ecolor[e] = 'red' ewidth[e] = 1.0 gv.wt[e] = 1.0 pos = gt.sfdp_layout(gv, pos=pos, pin=pin, eweight=gv.wt, multilevel=False) ### Use function in TreeGraph.py to parse Graph(gv) into JSON print "Generating JSON..." result = tg.graph_json(gv, pos=pos, ecolor=ecolor, ewidth=ewidth, vcolor=vcolor, vsize=vsize) result = result[ 1:] #strip the original { from the json so we can insert the time stamp date = time.strftime( "%Y%m%d%I%M%S" ) # grab the system date for the filename and convert it to a string treeid = str(stree) # convert stree int into a string timestamp = "{\"timestamp\": \"%s\", " % date final_result = timestamp + result # add date to first line of json file for later parsing path = str(os.path.dirname(os.path.realpath(__file__))) path = path[:-8] path = "%s//%s/" % ( path, taxonomy ) # build the full path to write the file too filename = "%stree_%s.JSON" % ( path, treeid) # build the full file_name for writing if not os.path.exists( path): ## if directory doesn't exist, create it. os.makedirs(path) f = open(filename, 'w') f.write(final_result) f.close print "Done." rowcount = rowcount + 1 except: # catch *all* exceptions e = sys.exc_info()[0] e = str(e) treeid = str(stree) print("Error: %s</p>" % e) errorstring = "Error: " + e + " on Tree: " + treeid # rough hack to store trees with errors and the general error errors.append( errorstring) # store all of the error strings rowcount = rowcount + 1 continue ## continue converting the rest of the trees into JSON even if a specific tree has errors else: print "Tree has more than 5000 leaves. No graph will be generated." print "JSON Generation Complete." ## write the error strings to a log file for review later if errors: with open("error_log.txt", "w+") as error_log: pickle.dump(errors, error_log)