示例#1
0
def test_realtime_speed(dev_str, call):
    if call in [helpers.np_call, helpers.jnp_call, helpers.mx_call]:
        # convolutions not yet implemented in numpy or jax
        # mxnet is unable to stack or expand zero-dimensional tensors
        pytest.skip()
    ivy.seed(0)
    device = 'cpu'
    batch_size = 1
    num_timesteps = 1
    num_cams = 1
    num_feature_channels = 3
    image_dims = [64, 64]
    omni_img_dims = [90, 180]
    esm = ESM(omni_image_dims=omni_img_dims, device=device)
    memory = esm.empty_memory(batch_size, num_timesteps)
    start_time = time.perf_counter()
    for i in range(50):
        obs = _get_dummy_obs(batch_size, num_timesteps, num_cams, image_dims, num_feature_channels, device)
        memory = esm(obs, memory, batch_size=batch_size, num_timesteps=num_timesteps, num_cams=num_cams,
                     image_dims=image_dims)
        memory_mean = memory.mean.numpy()
        assert memory_mean.shape == tuple([batch_size, num_timesteps] + omni_img_dims + [3 + num_feature_channels])
        assert memory_mean[0, 0, 0, 0, 0] == 0.
        np.max(memory_mean)
    end_time = time.perf_counter()
    time_taken = end_time - start_time
    assert time_taken < 20.
示例#2
0
    def test_slice_wrapped(self, dev_str, f, call, array_shape, num_processes):

        if call is helpers.mx_call and num_processes == 2:
            pytest.skip()

        ivy.seed(0)
        np.random.seed(0)
        self._init(array_shape, num_processes)

        assert len(self._dataset[-1:1].x) == 2
        assert list(self._dataset[-1:1].x[0].shape) == array_shape
        assert len(self._dataset[-1:1].x) == 2
        assert list(self._dataset[-1:1].x[1].shape) == array_shape
        assert len(self._dataset[9:11].x) == 2
        assert list(self._dataset[9:11].x[0].shape) == array_shape
        assert len(self._dataset[9:11].x) == 2
        assert list(self._dataset[9:11].x[0].shape) == array_shape

        check0 = not np.allclose(ivy.to_numpy(self._dataset[-1:1].x[0]),
                                 ivy.to_numpy(self._x[8]))
        check1 = not np.allclose(ivy.to_numpy(self._dataset[-1:1].x[1]),
                                 ivy.to_numpy(self._x[0]))
        check2 = not np.allclose(ivy.to_numpy(self._dataset[9:11].x[0]),
                                 ivy.to_numpy(self._x[0]))
        check3 = not np.allclose(ivy.to_numpy(self._dataset[9:11].x[1]),
                                 ivy.to_numpy(self._x[1]))

        assert check0 or check1 or check2 or check3

        # close
        self._dataset.close()
        del self._dataset
示例#3
0
    def __init__(self, num_iters, compile_flag, interactive, dev_str, f):

        # ivy
        f = choose_random_framework() if f is None else f
        ivy.set_framework(f)
        ivy.seed(0)

        # device
        if dev_str is None:
            dev_str = 'gpu:0' if ivy.gpu_is_available() else 'cpu'
        self._dev_str = dev_str

        # Load input images and poses
        this_dir = os.path.dirname(os.path.realpath(__file__))
        data = np.load(os.path.join(this_dir, 'nerf_data/tiny_nerf_data.npz'))
        images = ivy.array(data['images'], 'float32', dev_str)
        inv_ext_mats = ivy.array(data['poses'], 'float32', dev_str)

        # intrinsics
        focal_lengths = ivy.array(np.tile(np.reshape(data['focal'], (1, 1)), [100, 2]), 'float32', dev_str)
        self._img_dims = images.shape[1:3]
        pp_offsets = ivy.tile(ivy.array([[dim/2 - 0.5 for dim in self._img_dims]], dev_str=dev_str), [100, 1])

        # train data
        self._images = images[:100, ..., :3]
        self._intrinsics = ivy_vision.focal_lengths_and_pp_offsets_to_intrinsics_object(
            focal_lengths, pp_offsets, self._img_dims)
        self._cam_geoms = ivy_vision.inv_ext_mat_and_intrinsics_to_cam_geometry_object(
            inv_ext_mats[:100, 0:3], self._intrinsics)

        # test data
        self._test_img = images[101]
        self._test_cam_geom = ivy_vision.inv_ext_mat_and_intrinsics_to_cam_geometry_object(
            inv_ext_mats[101, 0:3], self._intrinsics.slice(0))

        # train config
        self._embed_length = 6
        self._lr = 5e-4
        self._num_samples = 64
        self._num_iters = num_iters

        # log config
        self._interactive = interactive
        self._log_freq = 1
        self._vis_freq = 25 if self._interactive else -1
        self._vis_log_dir = 'nerf_renderings'
        if os.path.exists(self._vis_log_dir):
            shutil.rmtree(self._vis_log_dir)
        os.makedirs(self._vis_log_dir)

        # model
        self._model = Model(4, 256, self._embed_length, dev_str)

        # compile
        if compile_flag:
            rays_o, rays_d = self._get_rays(self._cam_geoms.slice(0))
            target = self._images[0]
            self._loss_fn = ivy.compile_fn(self._loss_fn, False,
                                           example_inputs=[self._model, rays_o, rays_d, target, self._model.v])
示例#4
0
文件: test_random.py 项目: ivy-dl/ivy
def test_seed(seed_val, dtype_str, tensor_fn, dev_str, call):
    # smoke test
    ivy.seed(seed_val)
    # compilation test
    if call in [helpers.torch_call]:
        # pytorch scripting does not support functions with None return
        return
    helpers.assert_compilable(ivy.seed)
示例#5
0
文件: test_random.py 项目: ivy-dl/ivy
def test_shuffle(x, dtype_str, tensor_fn, dev_str, call):
    # smoke test
    x = tensor_fn(x, dtype_str, dev_str)
    ret = ivy.shuffle(x)
    # type test
    assert ivy.is_array(ret)
    # cardinality test
    assert ret.shape == x.shape
    # value test
    ivy.seed(0)
    first_shuffle = call(ivy.shuffle, x)
    ivy.seed(0)
    second_shuffle = call(ivy.shuffle, x)
    assert np.array_equal(first_shuffle, second_shuffle)
    # compilation test
    helpers.assert_compilable(ivy.shuffle)
示例#6
0
    def shuffle(self, seed_value=None):
        """
        Shuffle entries in all sub-arrays, such that they are still aligned along axis 0.

        :param seed_value: random seed to use for array shuffling
        :type seed_value: int
        """
        return_dict = dict()
        if seed_value is None:
            seed_value = _random.randint(0, 1000)
        for key, value in sorted(self.items()):
            if isinstance(value, Container):
                return_dict[key] = value.shuffle(seed_value)
            else:
                _ivy.seed(seed_value)
                return_dict[key] = _ivy.shuffle(value)
        return Container(return_dict)
示例#7
0
def main(env_str, steps=100, iters=10000, lr=0.001, seed=0, log_freq=100, vis_freq=1000, visualize=True, f=None):

    # config
    f = choose_random_framework(excluded=['numpy']) if f is None else f
    ivy.seed(seed)
    env = getattr(ivy_gym, env_str)()
    starting_obs = env.reset()

    # policy
    in_size = starting_obs.shape[0]
    ac_dim = env.action_space.shape[0]
    policy = Policy(in_size, ac_dim)

    # compile loss function
    compiled_loss_fn = ivy.compile_fn(lambda initial_state, pol_vs:
                                      loss_fn(env, initial_state, policy, pol_vs, steps),
                                      False, example_inputs=[env.get_state(), policy.v])

    # optimizer
    optimizer = ivy.Adam(lr=lr)

    # train
    scores = []
    for iteration in range(iters):

        if iteration % vis_freq == 0 and visualize:
            obs = env.reset()
            env.render()
            for _ in range(steps):
                ac = policy(obs)
                obs, _, _, _ = env.step(ac)
                env.render()

        env.reset()
        if iteration == 0:
            print('\nCompiling loss function for {} environment steps... This may take a while...\n'.format(steps))
        score = train_step(compiled_loss_fn, optimizer, env.get_state(), policy, f)
        if iteration == 0:
            print('\nLoss function compiled!\n')
        print('iteration {} score {}'.format(iteration, ivy.to_numpy(score).item()))
        scores.append(ivy.to_numpy(score)[0])

        if len(scores) == log_freq:
            print('\nIterations: {} Mean Score: {}\n'.format(iteration + 1, np.mean(scores)))
            scores.clear()
示例#8
0
    def __init__(self, controller, controller_proj, output_proj, output_dim, ctrl_input_size, ctrl_output_size,
                 total_parameter_num, memory_size, memory_vector_dim, read_head_num, write_head_num, v=None, usage=None,
                 addressing_mode='content_and_location', shift_range=1, clip_value=20, init_value=1e-6,
                 sequential_writing=False, retroactive_updates=False, retroactive_discount=0.96, with_erase=True,
                 seed=0):

        # vanilla ntm
        self._memory_size = memory_size
        self._memory_vector_dim = memory_vector_dim
        self._read_head_num = read_head_num
        self._write_head_num = write_head_num
        self._init_value = init_value
        self._addressing_mode = addressing_mode
        self._clip_value = clip_value
        self._output_dim = output_dim
        self._shift_range = shift_range
        self._num_parameters_per_head = self._memory_vector_dim + 1 + 1 + (self._shift_range * 2 + 1) + 1
        self._num_heads = self._read_head_num + self._write_head_num
        ivy.seed(seed)

        # fns + classes
        self._controller = controller
        self._controller_proj = controller_proj
        self._output_proj = output_proj

        # usage
        if usage is not None:
            self._usage = usage
        else:
            self._usage = ivy.zeros([memory_size, ])

        # step
        self._step = 0

        # MERLIN changes
        self._sequential_writing = sequential_writing
        self._retroactive_updates = retroactive_updates
        self._retroactive_discount = retroactive_discount
        self._with_erase = with_erase

        # variables
        ivy.Module.__init__(self, 'cpu')
示例#9
0
def main(seed=0, compile_mode=False, dev_strs=None):
    ivy.seed(seed)
    data_loader_spec_args = {
        'batch_size': 2,
        'dev_strs': [ivy.default(lambda: dev_strs[0], None, True)]
    }
    trainer_spec_args = {
        'total_iterations': 10,
        'ld_chkpt': False,
        'log_freq': 1,
        'initial_learning_rate': 0.1,
        'compile_mode': compile_mode,
        'dev_strs': dev_strs
    }
    trainer = trainer_builder.build_trainer(
        ExampleDataLoader,
        ExampleNetwork,
        ExampleTrainer,
        data_loader_spec_args=data_loader_spec_args,
        trainer_spec_args=trainer_spec_args)
    trainer.setup()
    trainer.train()
    trainer.close()
示例#10
0
    def test_single(self, dev_str, f, call, array_shape, num_processes):

        if call is helpers.mx_call and num_processes == 2:
            pytest.skip()

        ivy.seed(0)
        np.random.seed(0)
        self._init(array_shape, num_processes)

        assert list(self._dataset[0].x.shape) == array_shape
        assert list(self._dataset[4].x.shape) == array_shape
        assert list(self._dataset[8].x.shape) == array_shape

        check0 = not np.allclose(ivy.to_numpy(self._dataset[0].x),
                                 ivy.to_numpy(self._x[0]))
        check1 = not np.allclose(ivy.to_numpy(self._dataset[1].x),
                                 ivy.to_numpy(self._x[1]))
        check2 = not np.allclose(ivy.to_numpy(self._dataset[2].x),
                                 ivy.to_numpy(self._x[2]))
        check3 = not np.allclose(ivy.to_numpy(self._dataset[3].x),
                                 ivy.to_numpy(self._x[3]))
        check4 = not np.allclose(ivy.to_numpy(self._dataset[4].x),
                                 ivy.to_numpy(self._x[4]))
        check5 = not np.allclose(ivy.to_numpy(self._dataset[5].x),
                                 ivy.to_numpy(self._x[5]))
        check6 = not np.allclose(ivy.to_numpy(self._dataset[6].x),
                                 ivy.to_numpy(self._x[6]))
        check7 = not np.allclose(ivy.to_numpy(self._dataset[7].x),
                                 ivy.to_numpy(self._x[7]))
        check8 = not np.allclose(ivy.to_numpy(self._dataset[8].x),
                                 ivy.to_numpy(self._x[8]))

        assert check0 or check1 or check2 or check3 or check4 or check5 or check6 or check7 or check8

        # close
        self._dataset.close()
        del self._dataset
示例#11
0
def test_reduced_cost_after_checkpoint_load(dev_str, call, compile_mode):
    if call is helpers.np_call:
        # numpy does not support gradients, required for training
        pytest.skip()
    if call is helpers.jnp_call and ivy.wrapped_mode():
        # Jax does not support ivy.Array instances when calling _jax.grad()
        pytest.skip()

    example_dir = os.path.relpath(
        os.path.join(os.path.dirname(os.path.abspath(__file__)),
                     '../ivy_builder_demos'))

    # currently only PyTorch supports graph compilation
    compile_mode = compile_mode if ivy.current_framework_str(
    ) == 'torch' else False

    # dataset dirs specification
    dataset_dirs_args = dict()

    # dataset specification
    dataset_spec_filepath = os.path.join(example_dir, 'json_specs',
                                         'dataset_spec.json.example')
    dataset_spec_args = builder.parse_json_to_cont(dataset_spec_filepath)

    # data loader specification
    data_loader_spec_filepath = os.path.join(example_dir, 'json_specs',
                                             'data_loader_spec.json.example')
    data_loader_spec_args = builder.parse_json_to_cont(
        data_loader_spec_filepath)

    # network specification
    network_spec_filepath = os.path.join(example_dir, 'json_specs',
                                         'network_spec.json.example')
    network_spec_args = builder.parse_json_to_cont(network_spec_filepath)

    builder_helpers.remove_dirs()

    ivy.seed(0)
    trainer_spec_args = {
        'total_iterations': 1,
        'ld_chkpt': False,
        'save_freq': 1,
        'compile_mode': compile_mode
    }
    trainer = builder.build_trainer(
        ExampleDataLoader,
        ExampleNetwork,
        ExampleTrainer,
        dataset_dirs_args=dataset_dirs_args,
        dataset_dirs_class=ExampleDatasetDirs,
        dataset_spec_args=dataset_spec_args,
        dataset_spec_class=ExampleDatasetSpec,
        data_loader_spec_args=data_loader_spec_args,
        data_loader_spec_class=ExampleDataLoaderSpec,
        network_spec_args=network_spec_args,
        network_spec_class=ExampleNetworkSpec,
        trainer_spec_args=trainer_spec_args)
    trainer.setup()
    trainer.train()
    initial_cost = trainer._total_cost
    assert trainer._global_step == 1
    trainer.close()

    ivy.seed(0)
    steps_to_take_first = 10
    trainer_spec_args = {
        'total_iterations': steps_to_take_first,
        'ld_chkpt': False,
        'save_freq': 1,
        'compile_mode': compile_mode
    }
    trainer = builder.build_trainer(
        ExampleDataLoader,
        ExampleNetwork,
        ExampleTrainer,
        dataset_dirs_args=dataset_dirs_args,
        dataset_dirs_class=ExampleDatasetDirs,
        dataset_spec_args=dataset_spec_args,
        dataset_spec_class=ExampleDatasetSpec,
        data_loader_spec_args=data_loader_spec_args,
        data_loader_spec_class=ExampleDataLoaderSpec,
        network_spec_args=network_spec_args,
        network_spec_class=ExampleNetworkSpec,
        trainer_spec_args=trainer_spec_args)
    trainer.setup()
    trainer.train()
    ten_step_cost = trainer._total_cost
    assert trainer._global_step == steps_to_take_first
    trainer.close()
    assert initial_cost > ten_step_cost

    steps_to_take_second = 20
    trainer_spec_args = {
        'total_iterations': steps_to_take_second,
        'ld_chkpt': True,
        'save_freq': 1,
        'compile_mode': compile_mode
    }
    trainer = builder.build_trainer(
        ExampleDataLoader,
        ExampleNetwork,
        ExampleTrainer,
        dataset_dirs_args=dataset_dirs_args,
        dataset_dirs_class=ExampleDatasetDirs,
        dataset_spec_args=dataset_spec_args,
        dataset_spec_class=ExampleDatasetSpec,
        data_loader_spec_args=data_loader_spec_args,
        data_loader_spec_class=ExampleDataLoaderSpec,
        network_spec_args=network_spec_args,
        network_spec_class=ExampleNetworkSpec,
        trainer_spec_args=trainer_spec_args)
    trainer.setup()
    trainer.train()
    twenty_step_cost = trainer._total_cost
    assert trainer._global_step == steps_to_take_second
    trainer.close()
    assert ten_step_cost > twenty_step_cost
    builder_helpers.remove_dirs()
示例#12
0
    def __init__(self, spec: TrainerSpec) -> None:

        # specification
        self._spec = spec

        # uninitialized variables
        if spec.starting_iteration is not None:
            self._starting_iteration = spec.starting_iteration
        else:
            self._starting_iteration = 0
        self._total_iterations = None

        # trainer variables
        self._global_step = 0
        self._moving_average_loss = 0

        # set seed
        np.random.seed(self._spec.seed)
        ivy.seed(self._spec.seed)

        # uninitialized variables
        self._chkpt = None
        self._chkpt_manager = None

        # summary writer
        try:
            from torch.utils.tensorboard import SummaryWriter
        except ModuleNotFoundError:
            SummaryWriter = None
        if SummaryWriter is not None:
            self._writer = SummaryWriter(os.path.join(self._spec.log_dir, 'tnsrbrd'))
        else:
            self._writer = None

        # profiler
        self._profiling = self._spec.steps_to_profile > 0
        if self._profiling:
            self._profiler = ivy.Profiler(self._spec.log_dir)
        else:
            self._profiler = None

        # timing
        self._start_time = time.perf_counter()

        # batch
        self._training_batch = None

        # network
        self._network = self._spec.network
        self._net_spec = self._network.spec
        self._partial_grad_updates = bool(self._net_spec.v_keychains)

        # multi-dev
        self._dev_str = ivy.default(lambda: self._spec.dev_strs[0], ivy.default_device(), True)
        if len(self._spec.dev_strs) > 1:
            if self._network.built:
                raise Exception('Network must use either explicit or on_call build modes if training on multiple'
                                'devices, but the network was already built using on_init method.')
            ret_fn = lambda ret: ivy.unify_iter(ret, self._spec.dev_strs[0], 'mean', transpose=True)
            dev_mapper = ivy.DevMapperMultiProc(
                self.__getattribute__(self._spec.dev_map_fn), ret_fn, self._spec.dev_strs,
                constant={'network': self._network})
            self._multi_dev = True
        else:
            dev_mapper = None
            self._multi_dev = False

        # device manager
        if (self._multi_dev and self._spec.tune_device_allocation) or self._spec.tune_splitting:
            self._dev_manager = ivy.DevManager(
                dev_mapper, self._spec.dev_strs, tune_dev_alloc=(self._multi_dev and self._spec.tune_device_allocation),
                tune_dev_splits=self._spec.tune_splitting)
        else:
            self._dev_manager = None

        # compilation
        self._compile_network_once_tuned = False
        self._compile_optimizer_once_tuned = False