示例#1
0
 def recur(action,annot,env,pos=None):
     if isinstance(annot,ia.RenameAnnotation):
         save = dict()
         for x,y in annot.map.iteritems():
             if x in env:
                 save[x] = env[x]
             env[x] = env.get(y,y)
         recur(action,annot.arg,env,pos)
         env.update(save)
         return
     if isinstance(action,ia.Sequence):
         if pos is None:
             pos = len(action.args)
         if pos == 0:
             assert isinstance(annot,ia.EmptyAnnotation),annot
             return
         if not isinstance(annot,ia.ComposeAnnotation):
             iu.dbg('len(action.args)')
             iu.dbg('pos')
             iu.dbg('annot')
         assert isinstance(annot,ia.ComposeAnnotation)
         recur(action,annot.args[0],env,pos-1)
         recur(action.args[pos-1],annot.args[1],env)
         return
     if isinstance(action,ia.IfAction):
         assert isinstance(annot,ia.IteAnnotation),annot
         rncond = env.get(annot.cond,annot.cond)
         try:
             cond = handler.eval(rncond)
         except KeyError:
             print '{}skipping conditional'.format(action.lineno)
             iu.dbg('str_map(env)')
             iu.dbg('env.get(annot.cond,annot.cond)')
             return
         if cond:
             recur(action.args[1],annot.thenb,env)
         else:
             if len(action.args) > 2:
                 recur(action.args[2],annot.elseb,env)
         return
     if isinstance(action,ia.ChoiceAction):
         assert isinstance(annot,ia.IteAnnotation)
         annots = unite_annot(annot)
         assert len(annots) == len(action.args)
         for act,(cond,ann) in reversed(zip(action.args,annots)):
             if handler.eval(cond):
                 recur(act,ann,env)
                 return
         assert False,'problem in match_annotation'
     if isinstance(action,ia.CallAction):
         callee = im.module.actions[action.args[0].rep]
         seq = ia.Sequence(*([ia.Sequence() for x in callee.formal_params]
                          + [callee] 
                          + [ia.Sequence() for x in callee.formal_returns]))
         recur(seq,annot,env)
         return
     if isinstance(action,ia.LocalAction):
         recur(action.args[-1],annot,env)
         return
     handler.handle(action,env)
示例#2
0
def check_fcs_in_state(mod,ag,post,fcs):
#    iu.dbg('"foo"')
    history = ag.get_history(post)
#    iu.dbg('history.actions')
    gmc = lambda cls, final_cond: itr.small_model_clauses(cls,final_cond,shrink=diagnose.get())
    axioms = im.module.background_theory()
    if opt_trace.get():
        clauses = history.post
        clauses = lut.and_clauses(clauses,axioms)
        ffcs = filter_fcs(fcs)
        model = itr.small_model_clauses(clauses,ffcs,shrink=True)
        if model is not None:
#            iu.dbg('history.actions')
            mclauses = lut.and_clauses(*([clauses] + [c.cond() for c in ffcs if c.failed]))
            vocab = lut.used_symbols_clauses(mclauses)
            handler = MatchHandler(mclauses,model,vocab)
            assert all(x is not None for x in history.actions)
            # work around a bug in ivy_interp
            actions = [im.module.actions[a] if isinstance(a,str) else a for a in history.actions]
#            iu.dbg('actions')
            action = act.Sequence(*actions)
            act.match_annotation(action,clauses.annot,handler)
            handler.end()
            exit(0)
    else:
        res = history.satisfy(axioms,gmc,filter_fcs(fcs))
        if res is not None and diagnose.get():
            show_counterexample(ag,post,res)
    return not any(fc.failed for fc in fcs)
示例#3
0
文件: ivy_trace.py 项目: hannesm/ivy
def check_final_cond(ag,
                     post,
                     final_cond,
                     rels_to_min=[],
                     shrink=False,
                     handler_class=None):
    history = ag.get_history(post)
    axioms = im.module.background_theory()
    clauses = history.post
    clauses = lut.and_clauses(clauses, axioms)
    model = slv.get_small_model(clauses,
                                lg.uninterpreted_sorts(),
                                rels_to_min,
                                final_cond=final_cond,
                                shrink=shrink)
    if model is not None:
        failed = ([final_cond] if not isinstance(final_cond, list) else
                  [c.cond() for c in ffcs if c.failed])
        mclauses = lut.and_clauses(*([clauses] + failed))
        vocab = lut.used_symbols_clauses(mclauses)
        handler = (handler_class(mclauses, model, vocab) if handler_class
                   is not None else Trace(mclauses, model, vocab))
        assert all(x is not None for x in history.actions)
        # work around a bug in ivy_interp
        actions = [
            im.module.actions[a] if isinstance(a, str) else a
            for a in history.actions
        ]
        action = act.Sequence(*actions)
        act.match_annotation(action, clauses.annot, handler)
        handler.end()
        return handler
    return None
示例#4
0
def normal_program_from_module(mod):
    bindings = [ActionTermBinding(name,old_action_to_new(act)) for name,act in mod.actions.iteritems()]
    init = iact.Sequence(*[action for actname,action in mod.initializers])
    invars = mod.labeled_conjs
    asms = mod.assumed_invariants
    calls = sorted(mod.public_actions)
    return NormalProgram(bindings,init,invars,asms,calls)
示例#5
0
文件: ivy_to_cpp.py 项目: xornand/ivy
def init_method():
    asserts = [ia.AssertAction(im.module.init_cond.to_formula())]
    for a in im.module.axioms:
        asserts.append(ia.AssertAction(a))
    res = ia.Sequence(*asserts)
    res.formal_params = []
    res.formal_returns = []
    return res
示例#6
0
def env_action(bindings):
    racts = []
    for b in bindings:
        name = b.name
        act = b.action
        ract = iact.Sequence(act.stmt,iact.ReturnAction())
        ract.formal_params = act.inputs
        ract.formal_returns = act.outputs
        ract.label = name[4:] if name.startswith('ext:') else name
        racts.append(ract)
    action = iact.EnvAction(*racts)
    return action
示例#7
0
文件: ivy_check.py 项目: odedp/ivy
def check_fcs_in_state(mod, ag, post, fcs):
    #    iu.dbg('"foo"')
    history = ag.get_history(post)
    #    iu.dbg('history.actions')
    gmc = lambda cls, final_cond: itr.small_model_clauses(
        cls, final_cond, shrink=diagnose.get())
    axioms = im.module.background_theory()
    if opt_trace.get() or diagnose.get():
        clauses = history.post
        clauses = lut.and_clauses(clauses, axioms)
        ffcs = filter_fcs(fcs)
        model = itr.small_model_clauses(clauses, ffcs, shrink=True)
        if model is not None:
            #            iu.dbg('history.actions')
            failed = [c for c in ffcs if c.failed]
            mclauses = lut.and_clauses(*([clauses] +
                                         [c.cond() for c in failed]))
            vocab = lut.used_symbols_clauses(mclauses)
            #            handler = MatchHandler(mclauses,model,vocab) if opt_trace.get() else ivy_trace.Trace(mclauses,model,vocab)
            handler = ivy_trace.Trace(mclauses, model, vocab)
            thing = failed[-1].get_annot()
            if thing is None:
                assert all(x is not None for x in history.actions)
                # work around a bug in ivy_interp
                actions = [
                    im.module.actions[a] if isinstance(a, str) else a
                    for a in history.actions
                ]
                action = act.Sequence(*actions)
                annot = clauses.annot
            else:
                action, annot = thing
            act.match_annotation(action, annot, handler)
            handler.end()
            ff = failed[0]
            handler.is_cti = (lut.formula_to_clauses(ff.lf.formula)
                              if isinstance(ff, ConjChecker) else None)
            if not opt_trace.get():
                gui_art(handler)
            else:
                print str(handler)
            exit(0)
    else:
        res = history.satisfy(axioms, gmc, filter_fcs(fcs))
        if res is not None and diagnose.get():
            show_counterexample(ag, post, res)
    return not any(fc.failed for fc in fcs)
示例#8
0
 def add_initial_state(self, ic=None, abstractor=None):
     if ic == None:
         ic = im.init_cond
     s = self.domain.new_state(ic)
     if self.domain.initializers:
         action = ivy_actions.Sequence(
             *[a for n, a in self.domain.initializers])
         s = action_app(action, s)
         with AC(self, no_add=True):
             with EvalContext(check=False):
                 s2 = eval_state(s)
         s2.expr = s
         self.add(s2)
     else:
         s2 = self.domain.new_state(ic)
         self.add(s2, s)
     if abstractor:
         abstractor(s2)
示例#9
0
文件: ivy_trace.py 项目: odedp/ivy
def check_final_cond(ag,
                     post,
                     final_cond,
                     rels_to_min=[],
                     shrink=False,
                     handler_class=None):
    history = ag.get_history(post)
    axioms = im.module.background_theory()
    clauses = history.post
    clauses = lut.and_clauses(clauses, axioms)
    assert all(x is not None for x in history.actions)
    # work around a bug in ivy_interp
    actions = [
        im.module.actions[a] if isinstance(a, str) else a
        for a in history.actions
    ]
    action = act.Sequence(*actions)
    return check_vc(clauses, action, final_cond, rels_to_min, shrink,
                    handler_class)
示例#10
0
def summarize_action(action):
    res = ia.Sequence()
    res.lineno = action.lineno
    res.formal_params = action.formal_params
    res.formal_returns = action.formal_returns
    return res
示例#11
0
def to_aiger(mod,ext_act):

    erf = il.Symbol('err_flag',il.find_sort('bool'))
    errconds = []
    add_err_flag_mod(mod,erf,errconds)

    # we use a special state variable __init to indicate the initial state

    ext_acts = [mod.actions[x] for x in sorted(mod.public_actions)]
    ext_act = ia.EnvAction(*ext_acts)

    init_var = il.Symbol('__init',il.find_sort('bool')) 
    init = add_err_flag(ia.Sequence(*([a for n,a in mod.initializers]+[ia.AssignAction(init_var,il.And())])),erf,errconds)
    action = ia.Sequence(ia.AssignAction(erf,il.Or()),ia.IfAction(init_var,ext_act,init))
    
    # get the invariant to be proved, replacing free variables with
    # skolems. First, we apply any proof tactics.

    pc = ivy_proof.ProofChecker(mod.axioms,mod.definitions,mod.schemata)
    pmap = dict((lf.id,p) for lf,p in mod.proofs)
    conjs = []
    for lf in mod.labeled_conjs:
        if lf.id in pmap:
            proof = pmap[lf.id]
            subgoals = pc.admit_proposition(lf,proof)
            conjs.extend(subgoals)
        else:
            conjs.append(lf)

    invariant = il.And(*[il.drop_universals(lf.formula) for lf in conjs])
#    iu.dbg('invariant')
    skolemizer = lambda v: ilu.var_to_skolem('__',il.Variable(v.rep,v.sort))
    vs = ilu.used_variables_in_order_ast(invariant)
    sksubs = dict((v.rep,skolemizer(v)) for v in vs)
    invariant = ilu.substitute_ast(invariant,sksubs)
    invar_syms = ilu.used_symbols_ast(invariant)
    
    # compute the transition relation

    stvars,trans,error = action.update(mod,None)
    

#    print 'action : {}'.format(action)
#    print 'annotation: {}'.format(trans.annot)
    annot = trans.annot
#    match_annotation(action,annot,MatchHandler())
    
    indhyps = [il.close_formula(il.Implies(init_var,lf.formula)) for lf in mod.labeled_conjs]
#    trans = ilu.and_clauses(trans,indhyps)

    # save the original symbols for trace
    orig_syms = ilu.used_symbols_clauses(trans)
    orig_syms.update(ilu.used_symbols_ast(invariant))
                     
    # TODO: get the axioms (or maybe only the ground ones?)

    # axioms = mod.background_theory()

    # rn = dict((sym,tr.new(sym)) for sym in stvars)
    # next_axioms = ilu.rename_clauses(axioms,rn)
    # return ilu.and_clauses(axioms,next_axioms)

    funs = set()
    for df in trans.defs:
        funs.update(ilu.used_symbols_ast(df.args[1]))
    for fmla in trans.fmlas:
        funs.update(ilu.used_symbols_ast(fmla))
#   funs = ilu.used_symbols_clauses(trans)
    funs.update(ilu.used_symbols_ast(invariant))
    funs = set(sym for sym in funs if  il.is_function_sort(sym.sort))
    iu.dbg('[str(fun) for fun in funs]')

    # Propositionally abstract

    # step 1: get rid of definitions of non-finite symbols by turning
    # them into constraints

    new_defs = []
    new_fmlas = []
    for df in trans.defs:
        if len(df.args[0].args) == 0 and is_finite_sort(df.args[0].sort):
            new_defs.append(df)
        else:
            fmla = df.to_constraint()
            new_fmlas.append(fmla)
    trans = ilu.Clauses(new_fmlas+trans.fmlas,new_defs)

    # step 2: get rid of ite's over non-finite sorts, by introducing constraints

    cnsts = []
    new_defs = [elim_ite(df,cnsts) for df in trans.defs]
    new_fmlas = [elim_ite(fmla,cnsts) for fmla in trans.fmlas]
    trans = ilu.Clauses(new_fmlas+cnsts,new_defs)
    
    # step 3: eliminate quantfiers using finite instantiations

    from_asserts = il.And(*[il.Equals(x,x) for x in ilu.used_symbols_ast(il.And(*errconds)) if
                            tr.is_skolem(x) and not il.is_function_sort(x.sort)])
    iu.dbg('from_asserts')
    invar_syms.update(ilu.used_symbols_ast(from_asserts))
    sort_constants = mine_constants(mod,trans,il.And(invariant,from_asserts))
    sort_constants2 = mine_constants2(mod,trans,invariant)
    print '\ninstantiations:'
    trans,invariant = Qelim(sort_constants,sort_constants2)(trans,invariant,indhyps)
    
    
#    print 'after qe:'
#    print 'trans: {}'.format(trans)
#    print 'invariant: {}'.format(invariant)

    # step 4: instantiate the axioms using patterns

    # We have to condition both the transition relation and the
    # invariant on the axioms, so we define a boolean symbol '__axioms'
    # to represent the axioms.

    axs = instantiate_axioms(mod,stvars,trans,invariant,sort_constants,funs)
    ax_conj = il.And(*axs)
    ax_var = il.Symbol('__axioms',ax_conj.sort)
    ax_def = il.Definition(ax_var,ax_conj)
    invariant = il.Implies(ax_var,invariant)
    trans = ilu.Clauses(trans.fmlas+[ax_var],trans.defs+[ax_def])
    
    # step 5: eliminate all non-propositional atoms by replacing with fresh booleans
    # An atom with next-state symbols is converted to a next-state symbol if possible

    stvarset = set(stvars)
    prop_abs = dict()  # map from atoms to proposition variables
    global prop_abs_ctr  # sigh -- python lameness
    prop_abs_ctr = 0   # counter for fresh symbols
    new_stvars = []    # list of fresh symbols

    # get the propositional abstraction of an atom
    def new_prop(expr):
        res = prop_abs.get(expr,None)
        if res is None:
            prev = prev_expr(stvarset,expr,sort_constants)
            if prev is not None:
#                print 'stvar: old: {} new: {}'.format(prev,expr)
                pva = new_prop(prev)
                res = tr.new(pva)
                new_stvars.append(pva)
                prop_abs[expr] = res  # prevent adding this again to new_stvars
            else:
                global prop_abs_ctr
                res = il.Symbol('__abs[{}]'.format(prop_abs_ctr),expr.sort)
#                print '{} = {}'.format(res,expr)
                prop_abs[expr] = res
                prop_abs_ctr += 1
        return res

    # propositionally abstract an expression
    global mk_prop_fmlas
    mk_prop_fmlas = []
    def mk_prop_abs(expr):
        if il.is_quantifier(expr) or len(expr.args) > 0 and any(not is_finite_sort(a.sort) for a in expr.args):
            return new_prop(expr)
        return expr.clone(map(mk_prop_abs,expr.args))

    
    # apply propositional abstraction to the transition relation
    new_defs = map(mk_prop_abs,trans.defs)
    new_fmlas = [mk_prop_abs(il.close_formula(fmla)) for fmla in trans.fmlas]

    # find any immutable abstract variables, and give them a next definition

    def my_is_skolem(x):
        res = tr.is_skolem(x) and x not in invar_syms
        return res    
    def is_immutable_expr(expr):
        res = not any(my_is_skolem(sym) or tr.is_new(sym) or sym in stvarset for sym in ilu.used_symbols_ast(expr))
        return res
    for expr,v in prop_abs.iteritems():
        if is_immutable_expr(expr):
            new_stvars.append(v)
            print 'new state: {}'.format(expr)
            new_defs.append(il.Definition(tr.new(v),v))

    trans = ilu.Clauses(new_fmlas+mk_prop_fmlas,new_defs)

    # apply propositional abstraction to the invariant
    invariant = mk_prop_abs(invariant)

    # create next-state symbols for atoms in the invariant (is this needed?)
    rn = dict((sym,tr.new(sym)) for sym in stvars)
    mk_prop_abs(ilu.rename_ast(invariant,rn))  # this is to pick up state variables from invariant

    # update the state variables by removing the non-finite ones and adding the fresh state booleans
    stvars = [sym for sym in stvars if is_finite_sort(sym.sort)] + new_stvars

#    iu.dbg('trans')
#    iu.dbg('stvars')
#    iu.dbg('invariant')
#    exit(0)

    # For each state var, create a variable that corresponds to the input of its latch
    # Also, havoc all the state bits except the init flag at the initial time. This
    # is needed because in aiger, all latches start at 0!

    def fix(v):
        return v.prefix('nondet')
    def curval(v):
        return v.prefix('curval')
    def initchoice(v):
        return v.prefix('initchoice')
    stvars_fix_map = dict((tr.new(v),fix(v)) for v in stvars)
    stvars_fix_map.update((v,curval(v)) for v in stvars if v != init_var)
    trans = ilu.rename_clauses(trans,stvars_fix_map)
#    iu.dbg('trans')
    new_defs = trans.defs + [il.Definition(ilu.sym_inst(tr.new(v)),ilu.sym_inst(fix(v))) for v in stvars]
    new_defs.extend(il.Definition(curval(v),il.Ite(init_var,v,initchoice(v))) for v in stvars if  v != init_var)
    trans = ilu.Clauses(trans.fmlas,new_defs)
    
    # Turn the transition constraint into a definition
    
    cnst_var = il.Symbol('__cnst',il.find_sort('bool'))
    new_defs = list(trans.defs)
    new_defs.append(il.Definition(tr.new(cnst_var),fix(cnst_var)))
    new_defs.append(il.Definition(fix(cnst_var),il.Or(cnst_var,il.Not(il.And(*trans.fmlas)))))
    stvars.append(cnst_var)
    trans = ilu.Clauses([],new_defs)
    
    # Input are all the non-defined symbols. Output indicates invariant is false.

#    iu.dbg('trans')
    def_set = set(df.defines() for df in trans.defs)
    def_set.update(stvars)
#    iu.dbg('def_set')
    used = ilu.used_symbols_clauses(trans)
    used.update(ilu.symbols_ast(invariant))
    inputs = [sym for sym in used if
              sym not in def_set and not il.is_interpreted_symbol(sym)]
    fail = il.Symbol('__fail',il.find_sort('bool'))
    outputs = [fail]
    

#    iu.dbg('trans')
    
    # make an aiger

    aiger = Encoder(inputs,stvars,outputs)
    comb_defs = [df for df in trans.defs if not tr.is_new(df.defines())]

    invar_fail = il.Symbol('invar__fail',il.find_sort('bool'))  # make a name for invariant fail cond
    comb_defs.append(il.Definition(invar_fail,il.Not(invariant)))

    aiger.deflist(comb_defs)
    for df in trans.defs:
        if tr.is_new(df.defines()):
            aiger.set(tr.new_of(df.defines()),aiger.eval(df.args[1]))
    miter = il.And(init_var,il.Not(cnst_var),il.Or(invar_fail,il.And(fix(erf),il.Not(fix(cnst_var)))))
    aiger.set(fail,aiger.eval(miter))

#    aiger.sub.debug()

    # make a decoder for the abstract propositions

    decoder = dict((y,x) for x,y in prop_abs.iteritems())
    for sym in aiger.inputs + aiger.latches:
        if sym not in decoder and sym in orig_syms:
            decoder[sym] = sym

    cnsts = set(sym for syms in sort_constants.values() for sym in syms)
    return aiger,decoder,annot,cnsts,action,stvarset