示例#1
0
q2 = ( -2 * c**2 + 4 * b**2 + 4 * a**2 - 7 ) * y**2 - x / c;
print "q2 = " + str(q2);
q3 = ( -7 * b + 4 * a + 12 ) + z;
print "q3 = " + str(q3);
q4 = q2 / q3;
print "q4 = " + str(q4);
q5 = ( 2 * c**2 - 4 * b**2 - 4 * a**2 + 7 + x * z ) / (7 * b - 4 * a - 12 ) + y**2;
print "q5 = " + str(q5);
print "q5.factory() = " + str(q5.factory());
q6 = q5.monic();
print "q6 = " + str(q6);
print;


print "------- RR( [QQ(),ZM(19),DD()] ) ---------";
r = RR( [QQ(),ZM(19),DD()] );
print "r = " + str(r);
print "r.factory() = " + str(r.factory());
rc1 = RR( [ QQ(), ZM(19), DD() ] );
print [ str(x) for x in r.gens() ];
print "rc1.factory() = " + str(rc1.factory());
[pg0,pg1,pg2] = r.gens();
print "pg0     = " + str(pg0);
print "pg1     = " + str(pg1);
print "pg2     = " + str(pg2);
r1 = pg1 + pg2 + pg0;
print "r1 = " + str(r1);
r2 = r1 * r1 + 7 * r1;
print "r2 = " + str(r2);
r3 = r2**3;
print "r3 = " + str(r3);
示例#2
0
import sys

from jas import Ring, PolyRing, ParamIdeal, QQ, ZM, RR
from jas import startLog, terminate

# Boolean coefficient boolean GB
# see S. Inoue and A. Nagai "On the Implementation of Boolean Groebner Bases" in ASCM 2009
# Z_2 regular ring coefficent example

r = PolyRing(RR(ZM(2), 3), "a,x,y", PolyRing.lex)
print "r  = " + str(r)
#print len(r.gens())

[s1, s2, s3, a, x, y] = r.gens()
one = r.one()

print "one = " + str(one)
print "s1  = " + str(s1)
print "s2  = " + str(s2)
print "s3  = " + str(s3)
print "a   = " + str(a)
print "x   = " + str(x)
print "y   = " + str(y)

#brel = [ a**2 - a, x**2 - x, y**2 - y ];
brel = [x**2 - x, y**2 - y]

#print "brel = " + str(brel[0]) + ", " + str(brel[1]) + ", " + str(brel[2]);
print "brel = " + str(brel[0]) + ", " + str(brel[1])

pl = [(one + s1 + s2) * (x * y + x + y), s1 * x + s1, a * y + a, x * y]