rs = """ # solvable polynomials, U(sl_2_f): Rat(f,h) G RelationTable ( ( h ), ( f ), ( f h - 2 f ) ) """ r = SolvableRing(rs) print "SolvableRing: " + str(r) print ps = """ ( ( h^2 + f^3 ) ) """ f = SolvableIdeal(r, ps) print "SolvableIdeal: " + str(f) print rg = f.leftGB() print "seq left Output:", rg print rg = f.twosidedGB() print "seq twosided Output:", rg print
( h ), ( f ), ( f h - 2 f ) ) """; r = SolvableRing( rs ); print "SolvableRing: " + str(r); print; ps = """ ( ( e^2 + f^3 ) ) """; f = SolvableIdeal( r, ps ); print "SolvableIdeal: " + str(f); print; rg = f.leftGB(); print "seq left GB:", rg; print; rg = f.twosidedGB(); print "seq twosided GB:", rg; print; #rg = f.rightGB();
( a^2 ), ( b^2 ), ( c^2 ), ( f^2 ), ( g^2 ), ( h^2 ), ( u^2 ), ( v^2 ), ( w^2 ), ( x^2 ), ( y^2 ), ( z^2 ) ) """; f = SolvableIdeal( r, ps ); print "SolvableIdeal: " + str(f); print; rg = f.leftGB(); print "seq left GB:", rg; print; #rg = f.twosidedGB(); #print "seq twosided GB:", rg; #print; #rg = f.rightGB(); #print "seq right GB:", rg;
) """ r = SolvableRing(rs) print "SolvableRing: " + str(r) print ps = """ ( ( e1 e3^3 + e2^10 - a ), ( e1^3 e2^2 + e3 ), ( e3^3 + e3^2 - b ) ) """ f = SolvableIdeal(r, ps) print "SolvableIdeal: " + str(f) print rg = f.leftGB() print "seq left GB:", rg print from edu.jas.ring import SolvableGroebnerBaseSeq if SolvableGroebnerBaseSeq().isLeftGB(rg.list): print "is left GB" else: print "is not left GB" rg = f.parLeftGB(2)
ps = """ ( ( a - X^%s ), ( b - D X + %s ) ) """ for t in (2, 3, 5, 7, 11, 13, 17, 19, 23, 27, 31, 37, 43): # for t in (5,7): r1 = SolvableRing(rs1 % t) r1c = SolvableRing(rs1c) # print "SolvableRing: " + str(r1); # print "SolvableRing: " + str(r1c); # print; it = SolvableIdeal(r1, ps % (t, t)) # print "SolvableIdeal: " + str(it); # print; # compute I_{\phi_t} \cap WA_1^opp x = it.leftGB() print "seq left x:", x y = Ideal(x.pset).intersect(r1c.ring) len = y.list.size() print "seq left y: ", y print "seq left y len: ", len # print; # ------------------------------------- r2 = SolvableRing(rs2 % t) r2c = SolvableRing(rs2c % t) # print "SolvableRing: " + str(r2); # print "SolvableRing: " + str(r2c);
) """; r = SolvableRing( rs ); print "SolvableRing: " + str(r); print; ps = """ ( ( x^7 ), ( x d + 7 ) ) """; i7 = SolvableIdeal( r, ps ); print "SolvableIdeal: " + str(i7); print; i7rg = i7.leftGB(); print "seq left i7 Output:", i7rg; print; ps = """ ( ( d^7 ), ( x d - 7 + 1 ) ) """;
""" r = SolvableRing(rs) print "SolvableRing: " + str(r) print ps = """ ( ( e1 e3^3 + e2^10 - a ), ( e1^3 e2^2 + e3 ), ( e3^3 + e3^2 - b ) ) """ f = SolvableIdeal(r, ps) print "SolvableIdeal: " + str(f) print rg = f.leftGB() print "seq left GB:", rg print from edu.jas.ring import SolvableGroebnerBaseSeq if SolvableGroebnerBaseSeq().isLeftGB(rg.list): print "is left GB" else: print "is not left GB"
""" ps = """ ( ( e - X ), ( f + D^2 X ), ( h - 2 D X ) ) """ r1 = SolvableRing(rs1) r1c = SolvableRing(rs1c) #print "SolvableRing: " + str(r1); #print "SolvableRing: " + str(r1c); print it = SolvableIdeal(r1, ps) print "SolvableIdeal: " + str(it) print # compute I_{\phi_t} \cap WA_1^opp x = it.leftGB() print "seq left x:", x y = Ideal(x.pset).intersect(r1c.ring) len = y.list.size() print "seq left y: ", y print "seq left y len: ", len print #------------------------------------- r2 = SolvableRing(rs2) r2c = SolvableRing(rs2c) #print "SolvableRing: " + str(r2); #print "SolvableRing: " + str(r2c);
) """; r = SolvableRing( rs ); print "SolvableRing: " + str(r); print; ps = """ ( ( Xb + Yb ) ) """; # ( Xa + Xb + Xc + Ya + Yb + Yc + Ha + Hb ) f = SolvableIdeal( r, ps ); print "SolvIdeal: " + str(f); print; fl = f.list; print "fl: ", fl; p = fl[0]; print "p: ", p; print; from java.lang import System p2 = p; n = 15; t = System.currentTimeMillis();
ps = """ ( ( a - X^%s ), ( b - D X + %s ) ) """; for t in (2,3,5,7,11,13,17,19,23,27,31,37,43): #for t in (5,7): r1 = SolvableRing( rs1 % t ); r1c = SolvableRing( rs1c ); #print "SolvableRing: " + str(r1); #print "SolvableRing: " + str(r1c); #print; it = SolvableIdeal( r1, ps % (t,t) ); #print "SolvableIdeal: " + str(it); #print; # compute I_{\phi_t} \cap WA_1^opp x = it.leftGB(); print "seq left x:", x; y = Ideal(x.pset).intersect(r1c.ring); len = y.list.size(); print "seq left y: ", y; print "seq left y len: ", len; #print; #------------------------------------- r2 = SolvableRing( rs2 % t ); r2c = SolvableRing( rs2c % t ); #print "SolvableRing: " + str(r2); #print "SolvableRing: " + str(r2c);
( d ), ( x ), ( x d + 1 ) ) """ r = SolvableRing(rs) print "SolvableRing: " + str(r) print ps = """ ( ( x^7 ), ( x d + 7 ) ) """ i7 = SolvableIdeal(r, ps) print "SolvableIdeal: " + str(i7) print i7rg = i7.leftGB() print "seq left i7 Output:", i7rg print ps = """ ( ( d^7 ), ( x d - 7 + 1 ) ) """ j7 = SolvableIdeal(r, ps)
ps = """ ( ( e - X ), ( f + D^2 X ), ( h - 2 D X ) ) """; r1 = SolvableRing( rs1 ); r1c = SolvableRing( rs1c ); #print "SolvableRing: " + str(r1); #print "SolvableRing: " + str(r1c); print; it = SolvableIdeal( r1, ps ); print "SolvableIdeal: " + str(it); print; # compute I_{\phi_t} \cap WA_1^opp x = it.leftGB(); print "seq left x:", x; y = Ideal(x.pset).intersect(r1c.ring); len = y.list.size(); print "seq left y: ", y; print "seq left y len: ", len; print; #------------------------------------- r2 = SolvableRing( rs2 ); r2c = SolvableRing( rs2c ); #print "SolvableRing: " + str(r2); #print "SolvableRing: " + str(r2c);
( a^2 ), ( b^2 ), ( c^2 ), ( f^2 ), ( g^2 ), ( h^2 ), ( u^2 ), ( v^2 ), ( w^2 ), ( x^2 ), ( y^2 ), ( z^2 ) ) """ f = SolvableIdeal(r, ps) print "SolvableIdeal: " + str(f) print rg = f.leftGB() print "seq left GB:", rg print #rg = f.twosidedGB(); #print "seq twosided GB:", rg; #print; #rg = f.rightGB(); #print "seq right GB:", rg; #print;