示例#1
0
文件: linalg.py 项目: xueeinstein/jax
def funm(A, func, disp=True):
  A = jnp.asarray(A)
  if A.ndim != 2 or A.shape[0] != A.shape[1]:
    raise ValueError('expected square array_like input')

  T, Z = schur(A)
  T, Z = rsf2csf(T, Z)

  F = jnp.diag(func(jnp.diag(T)))
  F = F.astype(T.dtype.char)

  F, minden = _algorithm_11_1_1(F, T)
  F = Z @ F @ Z.conj().T

  if disp:
    return F

  if F.dtype.char.lower() == 'e':
    tol = jnp.finfo(jnp.float16).eps
  if F.dtype.char.lower() == 'f':
    tol = jnp.finfo(jnp.float32).eps
  else:
    tol = jnp.finfo(jnp.float64).eps

  minden = jnp.where(minden == 0.0, tol, minden)
  err = jnp.where(jnp.any(jnp.isinf(F)), jnp.inf, jnp.minimum(1, jnp.maximum(
          tol, (tol / minden) * norm(jnp.triu(T, 1), 1))))

  return F, err
示例#2
0
文件: linalg.py 项目: ahoenselaar/jax
def _cofactor_solve(a, b):
    """Equivalent to det(a)*solve(a, b) for nonsingular mat.

  Intermediate function used for jvp and vjp of det.
  This function borrows heavily from jax.numpy.linalg.solve and
  jax.numpy.linalg.slogdet to compute the gradient of the determinant
  in a way that is well defined even for low rank matrices.

  This function handles two different cases:
  * rank(a) == n or n-1
  * rank(a) < n-1

  For rank n-1 matrices, the gradient of the determinant is a rank 1 matrix.
  Rather than computing det(a)*solve(a, b), which would return NaN, we work
  directly with the LU decomposition. If a = p @ l @ u, then
  det(a)*solve(a, b) =
  prod(diag(u)) * u^-1 @ l^-1 @ p^-1 b =
  prod(diag(u)) * triangular_solve(u, solve(p @ l, b))
  If a is rank n-1, then the lower right corner of u will be zero and the
  triangular_solve will fail.
  Let x = solve(p @ l, b) and y = det(a)*solve(a, b).
  Then y_{n}
  x_{n} / u_{nn} * prod_{i=1...n}(u_{ii}) =
  x_{n} * prod_{i=1...n-1}(u_{ii})
  So by replacing the lower-right corner of u with prod_{i=1...n-1}(u_{ii})^-1
  we can avoid the triangular_solve failing.
  To correctly compute the rest of y_{i} for i != n, we simply multiply
  x_{i} by det(a) for all i != n, which will be zero if rank(a) = n-1.

  For the second case, a check is done on the matrix to see if `solve`
  returns NaN or Inf, and gives a matrix of zeros as a result, as the
  gradient of the determinant of a matrix with rank less than n-1 is 0.
  This will still return the correct value for rank n-1 matrices, as the check
  is applied *after* the lower right corner of u has been updated.

  Args:
    a: A square matrix or batch of matrices, possibly singular.
    b: A matrix, or batch of matrices of the same dimension as a.

  Returns:
    det(a) and cofactor(a)^T*b, aka adjugate(a)*b
  """
    a = _promote_arg_dtypes(jnp.asarray(a))
    b = _promote_arg_dtypes(jnp.asarray(b))
    a_shape = jnp.shape(a)
    b_shape = jnp.shape(b)
    a_ndims = len(a_shape)
    if not (a_ndims >= 2 and a_shape[-1] == a_shape[-2]
            and b_shape[-2:] == a_shape[-2:]):
        msg = ("The arguments to _cofactor_solve must have shapes "
               "a=[..., m, m] and b=[..., m, m]; got a={} and b={}")
        raise ValueError(msg.format(a_shape, b_shape))
    if a_shape[-1] == 1:
        return a[..., 0, 0], b
    # lu contains u in the upper triangular matrix and l in the strict lower
    # triangular matrix.
    # The diagonal of l is set to ones without loss of generality.
    lu, pivots, permutation = lax_linalg.lu(a)
    dtype = lax.dtype(a)
    batch_dims = lax.broadcast_shapes(lu.shape[:-2], b.shape[:-2])
    x = jnp.broadcast_to(b, batch_dims + b.shape[-2:])
    lu = jnp.broadcast_to(lu, batch_dims + lu.shape[-2:])
    # Compute (partial) determinant, ignoring last diagonal of LU
    diag = jnp.diagonal(lu, axis1=-2, axis2=-1)
    parity = jnp.count_nonzero(pivots != jnp.arange(a_shape[-1]), axis=-1)
    sign = jnp.asarray(-2 * (parity % 2) + 1, dtype=dtype)
    # partial_det[:, -1] contains the full determinant and
    # partial_det[:, -2] contains det(u) / u_{nn}.
    partial_det = jnp.cumprod(diag, axis=-1) * sign[..., None]
    lu = lu.at[..., -1, -1].set(1.0 / partial_det[..., -2])
    permutation = jnp.broadcast_to(permutation, batch_dims + (a_shape[-1], ))
    iotas = jnp.ix_(*(lax.iota(jnp.int32, b) for b in batch_dims + (1, )))
    # filter out any matrices that are not full rank
    d = jnp.ones(x.shape[:-1], x.dtype)
    d = lax_linalg.triangular_solve(lu, d, left_side=True, lower=False)
    d = jnp.any(jnp.logical_or(jnp.isnan(d), jnp.isinf(d)), axis=-1)
    d = jnp.tile(d[..., None, None], d.ndim * (1, ) + x.shape[-2:])
    x = jnp.where(d, jnp.zeros_like(x), x)  # first filter
    x = x[iotas[:-1] + (permutation, slice(None))]
    x = lax_linalg.triangular_solve(lu,
                                    x,
                                    left_side=True,
                                    lower=True,
                                    unit_diagonal=True)
    x = jnp.concatenate(
        (x[..., :-1, :] * partial_det[..., -1, None, None], x[..., -1:, :]),
        axis=-2)
    x = lax_linalg.triangular_solve(lu, x, left_side=True, lower=False)
    x = jnp.where(d, jnp.zeros_like(x), x)  # second filter

    return partial_det[..., -1], x