示例#1
0
def _sharded_jit_translation_rule(ctx, avals_in, avals_out, *in_nodes,
                                  in_parts, out_parts_thunk, nparts,
                                  name, call_jaxpr, local_in_parts,
                                  local_out_parts_thunk, local_nparts):
  subc = xc.XlaBuilder(f"sharded_jit_{name}")

  # We assume any extra leading in_nodes are constants and replicate them.
  num_extra_nodes = len(in_nodes) - len(in_parts)
  assert num_extra_nodes >= 0
  in_parts = (None,) * num_extra_nodes + in_parts

  args = []
  for i, (n, sharding) in enumerate(safe_zip(in_nodes, in_parts)):
    # We use xla.set_sharding instead of xla.with_sharding because inlined calls
    # shouldn't have shardings set directly on the inputs or outputs.
    arg = xla.parameter(subc, i, ctx.builder.GetShape(n))
    args.append(xla.set_sharding(subc, arg, sharding))

  sub_ctx = ctx.replace(
      builder=subc,
      name_stack=new_name_stack(wrap_name(name, "sharded_jit")))
  out_nodes = xla.jaxpr_subcomp(sub_ctx, call_jaxpr, (), *args)
  out_parts = out_parts_thunk()
  assert len(out_parts) == len(out_nodes)
  out_nodes = [xla.set_sharding(subc, out, sharding)
               for out, sharding in safe_zip(out_nodes, out_parts)]

  subc = subc.build(xops.Tuple(subc, out_nodes))
  return xla.xla_destructure(ctx.builder,
                             xops.Call(ctx.builder, subc, list(in_nodes)))
示例#2
0
文件: xla.py 项目: romanngg/jax
def primitive_subcomputation(platform: str, axis_env: 'AxisEnv',
                             prim: core.Primitive,
                             avals_in: Sequence[core.AbstractValue],
                             avals_out: Sequence[core.AbstractValue],
                             **params):
    c = xc.XlaBuilder(f"primitive_computation_{prim.name}")
    counts = it.count()
    xla_args = [
        parameter(c, next(counts), xla_shape) for a in avals_in
        for xla_shape in aval_to_xla_shapes(a)
    ]
    if (platform is not None
            and prim in _backend_specific_translations[platform]):
        rule = _backend_specific_translations[platform][prim]
    elif prim in _translations:
        rule = _translations[prim]

    ctx = TranslationContext(builder=c,
                             platform=platform,
                             axis_env=axis_env,
                             name_stack=new_name_stack())
    ans = rule(ctx, avals_in, avals_out, *xla_args, **params)

    if prim.multiple_results:
        return c.build(xops.Tuple(c, ans))
    else:
        x, = ans
        return c.build(x)
示例#3
0
 def f_with_avals(c, avals, xla_args, params):
     # parallelism is only supported via the new-style API.
     axis_env = AxisEnv(1, (), ())
     wrapped_fun = lu.wrap_init(fun, params)
     if not multiple_results:
         wrapped_fun = _tuple_output(wrapped_fun)
     with core.extend_axis_env_nd(zip(axis_env.names, axis_env.sizes)):
         jaxpr, _, consts = pe.trace_to_jaxpr_dynamic(wrapped_fun, avals)
     ctx = TranslationContext(c, backend, axis_env, new_name_stack())
     outs = jaxpr_subcomp(ctx, jaxpr, _xla_consts(c, consts), *xla_args)
     if (multiple_results or any(
             len(aval_to_xla_shapes(v.aval)) > 1 for v in jaxpr.outvars)):
         return xops.Tuple(c, outs)
     else:
         assert len(outs) == 1, outs
         return outs[0]
示例#4
0
文件: xla.py 项目: John1Tang/jax
def primitive_subcomputation(platform: str, axis_env: 'AxisEnv',
                             prim: core.Primitive,
                             *avals: core.AbstractValue, **params):
  c = xc.XlaBuilder(f"primitive_computation_{prim.name}")
  f = lower_fun(prim.bind, multiple_results=prim.multiple_results,
                new_style=True)
  xla_args, _ = _xla_callable_args(c, avals, tuple_args=False,
                                   filter_tokens=False)
  ctx = TranslationContext(builder=c, platform=platform, axis_env=axis_env,
                           name_stack=new_name_stack())
  ans = f(ctx.replace(builder=c), avals, None, *xla_args, **params)
  if prim.multiple_results:
    ans = xops.Tuple(c, ans)
  else:
    ans, = ans
  return c.build(ans)
示例#5
0
def _sharded_jit_lowering(ctx, *in_nodes, in_parts, out_parts_thunk, nparts,
                          name, call_jaxpr, local_in_parts,
                          local_out_parts_thunk, local_nparts):
    # We assume any extra leading in_nodes are constants and replicate them.
    num_extra_nodes = len(in_nodes) - len(in_parts)
    assert num_extra_nodes >= 0
    in_parts = (None, ) * num_extra_nodes + in_parts

    args = []
    for ns, sharding in safe_zip(
            safe_map(mlir.wrap_singleton_ir_values, in_nodes), in_parts):
        if sharding is not None:
            args.append([
                mlir.wrap_with_sharding_op(n, xla.sharding_to_proto(sharding))
                for n in ns
            ])
        else:
            args.append(ns)

    sub_ctx = ctx.module_context.replace(
        name_stack=new_name_stack(wrap_name(name, "sharded_jit")))
    fn = mlir.lower_jaxpr_to_fun(sub_ctx, f"sharded_jit_{name}",
                                 core.ClosedJaxpr(call_jaxpr, ()))

    output_types = safe_map(mlir.aval_to_ir_types, ctx.avals_out)
    flat_output_types = util.flatten(output_types)
    call = func_dialect.CallOp(flat_output_types,
                               ir.FlatSymbolRefAttr.get(fn.name.value),
                               mlir.flatten_lowering_ir_args(args))
    out_nodes = util.unflatten(call.results, safe_map(len, output_types))

    out_parts = out_parts_thunk()
    outputs = []
    for ns, sharding in safe_zip(out_nodes, out_parts):
        if sharding is not None:
            outputs.append([
                mlir.wrap_with_sharding_op(n, xla.sharding_to_proto(sharding))
                for n in ns
            ])
        else:
            outputs.append(ns)
    return outputs
示例#6
0
def _sharded_callable(
        fun: lu.WrappedFun, nparts: Optional[int],
        in_parts: Tuple[pxla.PartitionsOrReplicated, ...],
        out_parts_thunk: Callable[[], Tuple[pxla.PartitionsOrReplicated, ...]],
        local_in_parts: Optional[Tuple[pxla.PartitionsOrReplicated, ...]],
        local_out_parts_thunk: Callable[[], Optional[Tuple[
            pxla.PartitionsOrReplicated,
            ...]]], local_nparts: Optional[int], name: str, *abstract_args):
    nrep = 1

    if local_in_parts is None:
        local_in_parts = in_parts

    global_abstract_args = [
        pxla.get_global_aval(arg, parts,
                             lparts) for arg, parts, lparts in safe_zip(
                                 abstract_args, in_parts, local_in_parts)
    ]

    if logging.vlog_is_on(2):
        logging.vlog(2, "abstract_args: %s", abstract_args)
        logging.vlog(2, "global_abstract_args: %s", global_abstract_args)
        logging.vlog(2, "in_parts: %s", in_parts)
        logging.vlog(2, "local_in_parts: %s", local_in_parts)

    jaxpr, global_out_avals, consts = pe.trace_to_jaxpr_final(
        fun, global_abstract_args)

    platform = xb.get_backend().platform

    nparts = pxla.reconcile_num_partitions(jaxpr, nparts)
    assert nparts is not None
    if nparts > xb.device_count():
        raise ValueError(
            f"sharded_jit computation requires {nparts} devices, "
            f"but only {xb.device_count()} devices are available.")
    if xb.local_device_count() < nparts < xb.device_count():
        raise NotImplementedError(
            f"sharded_jit across multiple hosts must use all available devices. "
            f"Got {nparts} out of {xb.device_count()} requested devices "
            f"(local device count: {xb.local_device_count()})")

    if local_nparts is None:
        if nparts > xb.local_device_count():
            raise ValueError(
                "Specify 'local_nparts' when using cross-process sharded_jit "
                "and all inputs and outputs are replicated.")
        else:
            local_nparts = nparts
    if local_nparts > xb.local_device_count():
        raise ValueError(
            f"sharded_jit computation requires {local_nparts} local devices, "
            f"but only {xb.local_device_count()} local devices are available.")

    if logging.vlog_is_on(2):
        logging.vlog(2, "nparts: %d  local_nparts: %d", nparts, local_nparts)

    out_parts = out_parts_thunk()

    local_out_parts = local_out_parts_thunk()
    if local_out_parts is None:
        local_out_parts = out_parts

    if logging.vlog_is_on(2):
        logging.vlog(2, "out_parts: %s", out_parts)
        logging.vlog(2, "local_out_parts: %s", local_out_parts)

    local_out_avals = [
        pxla.get_local_aval(out, parts,
                            lparts) for out, parts, lparts in safe_zip(
                                global_out_avals, out_parts, local_out_parts)
    ]

    log_priority = logging.WARNING if config.jax_log_compiles else logging.DEBUG
    logging.log(log_priority, "Compiling %s for %d devices with args %s.",
                fun.__name__, nparts, global_abstract_args)

    axis_env = xla.AxisEnv(nrep, (), ())
    unordered_effects = [
        eff for eff in jaxpr.effects if eff not in core.ordered_effects
    ]
    ordered_effects = [
        eff for eff in jaxpr.effects if eff in core.ordered_effects
    ]
    module, _ = mlir.lower_jaxpr_to_module(
        f"spjit_{fun.__name__}",
        core.ClosedJaxpr(jaxpr, consts),
        unordered_effects,
        ordered_effects,
        platform=platform,
        axis_context=mlir.ReplicaAxisContext(axis_env),
        name_stack=new_name_stack(wrap_name(name, "sharded_jit")),
        donated_args=[False] * len(in_parts),
        arg_shardings=safe_map(xla.sharding_to_proto, in_parts),
        result_shardings=safe_map(xla.sharding_to_proto, out_parts))
    built = xc._xla.mlir.mlir_module_to_xla_computation(
        mlir.module_to_string(module), use_tuple_args=False, return_tuple=True)

    if nparts <= xb.local_device_count():
        devices = xb.local_devices()[:nparts]
    else:
        assert nparts == xb.device_count()
        devices = xb.devices()
    device_assignment = np.array([[d for d in devices]])
    device_assignment = np.reshape(device_assignment, (-1, nparts))
    # device_assignment = None  # TODO(skye): replace with default device assignment?

    compiled = dispatch.backend_compile(
        xb.get_backend(), built,
        xb.get_compile_options(nrep, nparts, device_assignment))

    input_specs = [
        pxla.partitioned_sharding_spec(local_nparts, parts, aval)
        for parts, aval in zip(local_in_parts, abstract_args)
    ]
    input_indices = [
        pxla.spec_to_indices(aval.shape, spec) if spec is not None else None
        for aval, spec in zip(abstract_args, input_specs)
    ]

    handle_args = partial(pxla.shard_args, compiled.local_devices(),
                          input_indices)
    handle_outs = _avals_to_results_handler(
        nrep,
        local_nparts,  # type: ignore
        local_out_parts,
        local_out_avals)
    return partial(_execute_spatially_partitioned, compiled, handle_args,
                   handle_outs)
示例#7
0
文件: dispatch.py 项目: cloudhan/jax
def lower_xla_callable(fun: lu.WrappedFun, device, backend, name,
                       donated_invars, always_lower: bool, keep_unused: bool,
                       *arg_specs):
    """Lower into XLA.

  Args:
    always_lower: If `True`, even trivial programs (not doing any computation
      such as lambda x: x) will be lowered into an XLA program.
    keep_unused: If `False` (the default), arguments that JAX determines to be
      unused by `fun` *may* be dropped from resulting compiled XLA executables.
      Such arguments will not be transferred to the device nor provided to the
      underlying executable. If `True`, unused arguments will not be pruned.
  """
    if device is not None and backend is not None:
        raise ValueError("can't specify both a device and a backend for jit, "
                         "got device={} and backend={}".format(
                             device, backend))
    abstract_args, arg_devices = util.unzip2(arg_specs)
    if fun.in_type is not None:
        abstract_args, which_explicit = util.unzip2(fun.in_type)
    else:
        which_explicit = None
    with log_elapsed_time(f"Finished tracing + transforming {fun.__name__} "
                          "for jit in {elapsed_time} sec"):
        jaxpr, out_avals, consts = pe.trace_to_jaxpr_final(
            fun, abstract_args, pe.debug_info_final(fun, "jit"),
            which_explicit)
    if any(isinstance(c, core.Tracer) for c in consts):
        raise UnexpectedTracerError("Encountered an unexpected tracer.")
    # TODO(mattjj): handle argument pruning w/ dynamic shapes
    if fun.in_type is None and not keep_unused:
        jaxpr, kept_const_idx, kept_var_idx = _prune_unused_inputs(jaxpr)
        consts = [c for i, c in enumerate(consts) if i in kept_const_idx]
        abstract_args, arg_devices = util.unzip2(
            [a for i, a in enumerate(arg_specs) if i in kept_var_idx])
        donated_invars = [
            x for i, x in enumerate(donated_invars) if i in kept_var_idx
        ]
        del kept_const_idx
    else:
        kept_var_idx = set(range(len(abstract_args)))
    map(prefetch, itertools.chain(consts, jaxpr_literals(jaxpr)))
    jaxpr = apply_outfeed_rewriter(jaxpr)

    nreps = jaxpr_replicas(jaxpr)
    device = _xla_callable_device(nreps, backend, device, arg_devices)
    backend = xb.get_device_backend(device) if device else xb.get_backend(
        backend)

    if (config.jax_dynamic_shapes and jaxpr_has_bints(jaxpr)
            and not _backend_supports_unbounded_dynamic_shapes(backend)):
        jaxpr, consts = pe.pad_jaxpr(jaxpr, consts)

    # Computations that only produce constants and/or only rearrange their inputs,
    # which are often produced from partial evaluation, don't need compilation,
    # and don't need to evaluate their arguments.
    if not jaxpr.eqns and not always_lower:
        return XlaComputation(name,
                              None,
                              True,
                              None,
                              None,
                              jaxpr=jaxpr,
                              consts=consts,
                              device=device,
                              in_avals=abstract_args,
                              out_avals=out_avals,
                              has_unordered_effects=False,
                              ordered_effects=[],
                              kept_var_idx=kept_var_idx,
                              keepalive=None)

    if not _on_exit:
        log_priority = logging.WARNING if config.jax_log_compiles else logging.DEBUG
        if len(abstract_args) > 10:
            msg = f"Compiling {fun.__name__} ({id(fun)}) for {len(abstract_args)} args."
        else:
            msg = f"Compiling {fun.__name__} ({id(fun)} for args {abstract_args}."
        logging.log(log_priority, msg)

    if nreps > 1:
        warnings.warn(
            f"The jitted function {name} includes a pmap. Using "
            "jit-of-pmap can lead to inefficient data movement, as the outer jit "
            "does not preserve sharded data representations and instead collects "
            "input and output arrays onto a single device. "
            "Consider removing the outer jit unless you know what you're doing. "
            "See https://github.com/google/jax/issues/2926.")

    if nreps > xb.device_count(backend):
        raise ValueError(
            f"compiling computation `{name}` that requires {nreps} replicas, but "
            f"only {xb.device_count(backend)} XLA devices are available.")

    if xb.process_count() > 1 and (nreps > 1 or jaxpr_has_pmap(jaxpr)):
        raise NotImplementedError(
            "jit of multi-host pmap not implemented (and jit-of-pmap can cause "
            "extra data movement anyway, so maybe you don't want it after all)."
        )

    # pass long arg lists as tuple for TPU
    tuple_args = len(abstract_args) > 100
    axis_env = xla.AxisEnv(nreps, (), ())
    name_stack = util.new_name_stack(util.wrap_name(name, 'jit'))
    closed_jaxpr = core.ClosedJaxpr(jaxpr, consts)
    module_name = f"jit_{fun.__name__}"
    unordered_effects = [
        eff for eff in closed_jaxpr.effects if eff not in core.ordered_effects
    ]
    ordered_effects = [
        eff for eff in closed_jaxpr.effects if eff in core.ordered_effects
    ]
    module, keepalive = mlir.lower_jaxpr_to_module(
        module_name, closed_jaxpr,
        unordered_effects, ordered_effects, backend.platform,
        mlir.ReplicaAxisContext(axis_env), name_stack, donated_invars)
    return XlaComputation(name,
                          module,
                          False,
                          donated_invars,
                          which_explicit,
                          nreps=nreps,
                          device=device,
                          backend=backend,
                          tuple_args=tuple_args,
                          in_avals=abstract_args,
                          out_avals=out_avals,
                          has_unordered_effects=bool(unordered_effects),
                          ordered_effects=ordered_effects,
                          kept_var_idx=kept_var_idx,
                          keepalive=keepalive)
示例#8
0
def _sharded_callable(
        fun: lu.WrappedFun, nparts: Optional[int],
        in_parts: Tuple[pxla.PartitionsOrReplicated, ...],
        out_parts_thunk: Callable[[], Tuple[pxla.PartitionsOrReplicated, ...]],
        local_in_parts: Optional[Tuple[pxla.PartitionsOrReplicated, ...]],
        local_out_parts_thunk: Callable[[], Optional[Tuple[
            pxla.PartitionsOrReplicated,
            ...]]], local_nparts: Optional[int], name: str, *abstract_args):
    nrep = 1

    if local_in_parts is None:
        local_in_parts = in_parts

    global_abstract_args = [
        pxla.get_global_aval(arg, parts,
                             lparts) for arg, parts, lparts in safe_zip(
                                 abstract_args, in_parts, local_in_parts)
    ]

    if logging.vlog_is_on(2):
        logging.vlog(2, "abstract_args: %s", abstract_args)
        logging.vlog(2, "global_abstract_args: %s", global_abstract_args)
        logging.vlog(2, "in_parts: %s", in_parts)
        logging.vlog(2, "local_in_parts: %s", local_in_parts)

    jaxpr, global_out_avals, consts = pe.trace_to_jaxpr_final(
        fun, global_abstract_args)

    platform = xb.get_backend().platform
    if platform not in ["tpu", "gpu"]:
        # TODO(skye): fall back to regular jit?
        raise ValueError(f"sharded_jit not supported for {platform}")

    nparts = pxla.reconcile_num_partitions(jaxpr, nparts)
    assert nparts is not None
    if nparts > xb.device_count():
        raise ValueError(
            f"sharded_jit computation requires {nparts} devices, "
            f"but only {xb.device_count()} devices are available.")
    if xb.local_device_count() < nparts < xb.device_count():
        raise NotImplementedError(
            f"sharded_jit across multiple hosts must use all available devices. "
            f"Got {nparts} out of {xb.device_count()} requested devices "
            f"(local device count: {xb.local_device_count()})")

    if local_nparts is None:
        if nparts > xb.local_device_count():
            raise ValueError(
                "Specify 'local_nparts' when using cross-process sharded_jit "
                "and all inputs and outputs are replicated.")
        else:
            local_nparts = nparts
    if local_nparts > xb.local_device_count():
        raise ValueError(
            f"sharded_jit computation requires {local_nparts} local devices, "
            f"but only {xb.local_device_count()} local devices are available.")

    if logging.vlog_is_on(2):
        logging.vlog(2, "nparts: %d  local_nparts: %d", nparts, local_nparts)

    out_parts = out_parts_thunk()

    local_out_parts = local_out_parts_thunk()
    if local_out_parts is None:
        local_out_parts = out_parts

    if logging.vlog_is_on(2):
        logging.vlog(2, "out_parts: %s", out_parts)
        logging.vlog(2, "local_out_parts: %s", local_out_parts)

    local_out_avals = [
        pxla.get_local_aval(out, parts,
                            lparts) for out, parts, lparts in safe_zip(
                                global_out_avals, out_parts, local_out_parts)
    ]

    log_priority = logging.WARNING if config.jax_log_compiles else logging.DEBUG
    logging.log(log_priority, "Compiling %s for %d devices with args %s.",
                fun.__name__, nparts, global_abstract_args)

    c = xc.XlaBuilder("spjit_{}".format(fun.__name__))
    xla_consts = _map(partial(xla.pyval_to_ir_constant, c), consts)
    xla_args = _xla_sharded_args(c, global_abstract_args, in_parts)
    axis_env = xla.AxisEnv(nrep, (), ())
    ctx = xla.TranslationContext(
        c, platform, axis_env, new_name_stack(wrap_name(name, "sharded_jit")))
    out_nodes = xla.jaxpr_subcomp(ctx, jaxpr, xla_consts, *xla_args)
    out_tuple = xla.with_sharding(c, out_parts, xops.Tuple, c, out_nodes)
    built = c.Build(out_tuple)

    if nparts <= xb.local_device_count():
        devices = xb.local_devices()[:nparts]
    else:
        assert nparts == xb.device_count()
        devices = xb.devices()
    device_assignment = np.array([[d for d in devices]])
    device_assignment = np.reshape(device_assignment, (-1, nparts))
    # device_assignment = None  # TODO(skye): replace with default device assignment?

    compiled = dispatch.backend_compile(
        xb.get_backend(), built,
        xb.get_compile_options(nrep, nparts, device_assignment))

    input_specs = [
        pxla.partitioned_sharding_spec(local_nparts, parts, aval)
        for parts, aval in zip(local_in_parts, abstract_args)
    ]
    input_indices = [
        pxla.spec_to_indices(aval.shape, spec) if spec is not None else None
        for aval, spec in zip(abstract_args, input_specs)
    ]

    handle_args = partial(pxla.shard_args, compiled.local_devices(),
                          input_indices)
    handle_outs = _avals_to_results_handler(
        nrep,
        local_nparts,  # type: ignore
        local_out_parts,
        local_out_avals)
    return partial(_execute_spatially_partitioned, compiled, handle_args,
                   handle_outs)