def _bound_output_tracers(self, primitive, params, jaxpr, consts, env, in_tracers, out_pvs, out_consts, out_keys, name, is_map): """Takes a traced function and binds the Jaxpr to output tracers.""" lifted_jaxpr = pe.convert_constvars_jaxpr(jaxpr) const_tracers = safe_map(self.new_instantiated_const, consts) env_tracers = safe_map(self.instantiate_const, env) out_tracers = [ UnzipTracer(self, pe.PartialVal((pv, const)), None, key) for pv, const, key in safe_zip(out_pvs, out_consts, out_keys) ] new_params = dict(params, name=name, call_jaxpr=lifted_jaxpr) if 'donated_invars' in params: new_donated_invars = ( (False, ) * len(const_tracers) + (False, ) * len(env_tracers) + tuple(v for v, t in zip(params['donated_invars'], in_tracers) if not t.pval.is_known())) new_params['donated_invars'] = new_donated_invars if is_map: out_axes = params['out_axes_thunk']() assert all(out_axis == 0 for out_axis in out_axes) new_params['out_axes'] = (0, ) * len(out_tracers) del new_params['out_axes_thunk'] eqn = pe.new_eqn_recipe(tuple(const_tracers + env_tracers + in_tracers), out_tracers, primitive, new_params, source_info_util.current()) # pytype: disable=wrong-arg-types for t in out_tracers: t.recipe = eqn return out_tracers
def _make_typed_jaxpr(traceable, in_avals): pvals = [pe.PartialVal((aval, core.unit)) for aval in in_avals] jaxpr, pvals_out, consts = pe.trace_to_jaxpr(traceable, pvals, instantiate=True) out_avals, _ = unzip2(pvals_out) return core.TypedJaxpr(jaxpr, consts, in_avals, out_avals)
def _make_typed_jaxpr(traceable, in_avals): pvals = [pe.PartialVal((aval, core.unit)) for aval in in_avals] jaxpr, pval_out, consts = pe.trace_to_jaxpr(traceable, pvals, instantiate=True) out_aval, _ = pval_out assert isinstance(out_aval, core.AbstractValue) return core.TypedJaxpr(jaxpr, consts, in_avals, out_aval)
def _initial_style_jaxpr(fun, in_tree, in_avals): in_pvals = [pe.PartialVal((aval, core.unit)) for aval in in_avals] fun, out_tree = flatten_fun_nokwargs(lu.wrap_init(fun), in_tree) jaxpr, out_pvals, consts = pe.trace_to_jaxpr(fun, in_pvals, instantiate=True) out_avals = _map(raise_to_shaped, unzip2(out_pvals)[0]) const_avals = tuple(raise_to_shaped(core.get_aval(c)) for c in consts) typed_jaxpr = core.TypedJaxpr(pe.closure_convert_jaxpr(jaxpr), (), const_avals + in_avals, out_avals) return typed_jaxpr, consts, out_tree()
def start_tracing_body(self): """Called upon starting the tracing of the loop body.""" # Make a copy of the current value of the mutable state self.carried_state_initial = copy.copy(self.scope._mutable_state) # The entire state is carried. self.carried_state_names = sorted(self.scope._mutable_state.keys()) # TODO: This is the first part of partial_eval.trace_to_subjaxpr. Share. self.trace = self.scope.start_subtrace() # Set the scope._mutable_state to new tracing variables. for key, initial in self.carried_state_initial.items(): mt_aval = _BodyTracer.abstractify(initial) mt_pval = pe.PartialVal((mt_aval, core.unit)) mt_var = self.trace.new_arg(mt_pval) self.carried_state_vars[key] = mt_var self.scope._mutable_state[key] = mt_var index_var_aval = _BodyTracer.abstractify(0) index_var_pval = pe.PartialVal((index_var_aval, core.unit)) self._index_var = self.trace.new_arg(index_var_pval)
def _tscan(f, a, bs, fields=(0, )): """ Works as jax.lax.scan but has additional `fields` argument to select only necessary fields from `a`'s structure. Defaults to selecting only the first field. Other fields will be filled by None. """ # Note: code is copied and modified from lax.scan implementation in # [JAX](https://github.com/google/jax) to support the additional `fields` # arg. Original code has the following copyright: # # Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License") # convert pytree to flat jaxtuple a, a_tree = pytree_to_flatjaxtuple(a) bs, b_tree = pytree_to_flatjaxtuple(bs) fields, _ = pytree_to_flatjaxtuple(fields) f, out_tree = pytree_fun_to_flatjaxtuple_fun(wrap_init(f), (a_tree, b_tree)) # convert arrays to abstract values a_aval, _ = lax._abstractify(a) bs_aval, _ = lax._abstractify(bs) # convert bs to b b_aval = core.AbstractTuple( [ShapedArray(b.shape[1:], b.dtype) for b in bs_aval]) # convert abstract values to partial values (?) then evaluate to get jaxpr a_pval = partial_eval.PartialVal((a_aval, core.unit)) b_pval = partial_eval.PartialVal((b_aval, core.unit)) jaxpr, pval_out, consts = partial_eval.trace_to_jaxpr(f, (a_pval, b_pval)) aval_out, _ = pval_out consts = core.pack(consts) out = tscan_p.bind(a, bs, fields, consts, aval_out=aval_out, jaxpr=jaxpr) return tree_unflatten(out_tree(), out)
def wrapped(*args, **kwargs): fun = lu.wrap_init(f, kwargs) flat_args, in_tree = tree_util.tree_flatten(args) flat_fun, out_tree = api_util.flatten_fun_nokwargs(fun, in_tree) flat_avals = safe_map(get_shaped_aval, flat_args) pvals = [pe.PartialVal((aval, jax_core.unit)) for aval in flat_avals] jaxpr, out_pvals, consts = pe.trace_to_jaxpr( flat_fun, pvals, instantiate=True, stage_out=True, trace_type=pe.StagingJaxprTrace) out_avals = [pval.get_aval() for pval in out_pvals] typed_jaxpr = jax_core.TypedJaxpr(jaxpr, consts, flat_avals, out_avals) return typed_jaxpr, (in_tree, out_tree())
def _scan_partial_eval(trace, *tracers, **kwargs): forward, length, num_consts, num_carry, jaxpr, linear = split_dict( kwargs, ["forward", "length", "num_consts", "num_carry", "jaxpr", "linear"]) num_xs = len(jaxpr.in_avals) - num_carry - num_consts num_ys = len(jaxpr.out_avals) - num_carry unknowns = original_unknowns = [t.pval[0] is not None for t in tracers] const_uk, init_uk, xs_uk = split_list(unknowns, [num_consts, num_carry]) carry_uk = init_uk for _ in range(1000): unknowns = const_uk + carry_uk + xs_uk jaxpr_1, jaxpr_2, out_uk = pe.partial_eval_jaxpr( jaxpr, unknowns, instantiate=carry_uk + [False] * num_ys) carry_uk_out, ys_uk = out_uk[:num_carry], out_uk[num_carry:] if carry_uk_out == carry_uk: break else: carry_uk = carry_uk_out else: raise FixedPointError in_consts = [core.unit if uk else t.pval[1] for uk, t in zip(unknowns, tracers)] new_tracers = [trace.instantiate_const(t) if uk else trace.new_instantiated_literal(core.unit) for uk, t in zip(unknowns, tracers)] carry_avals, y_avals = split_list(jaxpr.out_avals, [num_carry]) ys_avals = _map(partial(_promote_aval_rank, length), y_avals) out_avals = carry_avals + ys_avals out_pvs = [aval if uk else None for aval, uk in zip(out_avals, out_uk)] linear_1 = [lin or uk for uk, lin in zip(unknowns, linear)] out_flat = scan_p.bind( *in_consts, forward=forward, length=length, jaxpr=jaxpr_1, num_consts=num_consts, num_carry=num_carry, linear=linear_1) out_carry, ys, residuals = split_list(out_flat, [num_carry, num_ys]) out_consts = out_carry + ys residual_tracers = _map(trace.new_instantiated_const, residuals) out_tracers = [pe.JaxprTracer(trace, pe.PartialVal((pv, const)), None) for pv, const in zip(out_pvs, out_consts)] linear_2 = ([lin or not uk for uk, lin in zip(unknowns, linear)] + [False] * len(residual_tracers)) eqn = pe.new_jaxpr_eqn(new_tracers + residual_tracers, out_tracers, scan_p, (), dict(forward=forward, length=length, jaxpr=jaxpr_2, num_consts=num_consts, num_carry=num_carry, linear=linear_2)) for t in out_tracers: t.recipe = eqn return out_tracers
def wrapped(*args, **kwargs): fun = lu.wrap_init(f, kwargs) flat_args, in_tree = tree_util.tree_flatten(args) flat_fun, out_tree = api_util.flatten_fun_nokwargs(fun, in_tree) flat_avals = safe_map(get_shaped_aval, flat_args) if not jax.config.omnistaging_enabled: raise ValueError('Oryx must be used with JAX omnistaging enabled.') if dynamic: jaxpr, _, consts = pe.trace_to_jaxpr_dynamic(flat_fun, flat_avals) else: pvals = [ pe.PartialVal((aval, jax_core.unit)) for aval in flat_avals ] jaxpr, _, consts = pe.trace_to_jaxpr(flat_fun, pvals, instantiate=True) typed_jaxpr = jax_core.ClosedJaxpr(jaxpr, consts) return typed_jaxpr, (in_tree, out_tree())
def _scan_partial_eval(trace, *tracers, **kwargs): jaxpr = kwargs.pop('jaxpr') length = kwargs.pop('length') forward = kwargs.pop('forward') assert not kwargs in_pvs, _ = unzip2([t.pval for t in tracers]) sc_consts, sc_init, sc_xs = map(pe.unknown, in_pvs) sc_carry = sc_init for i in range(1000): second_components = (sc_consts, sc_carry, sc_xs) jaxpr_1, jaxpr_2, sc_out = pe.partial_eval_jaxpr(jaxpr, second_components, instantiate=(sc_carry, False)) sc_carry_out, sc_ys = sc_out if sc_carry_out == sc_carry: break else: sc_carry = _binary_lattice_join(sc_carry, sc_carry_out) else: raise FixedPointError consts_tracer, init_tracer, xs_tracer = tracers lifted_init_tracer = _lift_tracer(trace, init_tracer, sc_carry) lifted_tracers = consts_tracer, lifted_init_tracer, xs_tracer in_pvs, in_consts = unzip2([t.pval for t in lifted_tracers]) carry_aval, y_aval = jaxpr.out_aval ys_aval = _promote_aval_rank(length, y_aval) out_aval = core.AbstractTuple((carry_aval, ys_aval)) out_pv = _put_known_pvs(sc_out, out_aval) out_carry, (ys, residuals) = scan_p.bind(*in_consts, forward=forward, length=length, jaxpr=jaxpr_1) out_const = core.pack((out_carry, ys)) residuals_tracer = trace.new_instantiated_const(core.pack(residuals)) d, c, a = lifted_tracers new_tracers = (d, c, (a, residuals_tracer)) eqn = core.JaxprEqn(new_tracers, None, scan_p, (), True, False, dict(forward=forward, length=length, jaxpr=jaxpr_2)) return pe.JaxprTracer(trace, pe.PartialVal((out_pv, out_const)), eqn)
def default_process_primitive(self, primitive, tracers, params): """Partially evaluate primitives and saves variable recipes.""" pvs, consts = jax_util.unzip2(t.pval for t in tracers) if all(pv is None for pv in pvs): return primitive.bind(*consts, **params) settings = trace_util.get_dynamic_context(self).settings tracers = safe_map(self.instantiate_const, tracers) if any(not isinstance(t, UnzipTracer) for t in tracers): assert False key = all(t.is_key() for t in tracers) avals = [t.aval for t in tracers] ans = primitive.abstract_eval(*avals, **params) if not primitive.multiple_results: ans = [ans] out_tracers = [ UnzipTracer(self, pe.PartialVal((aval, jax_core.unit)), None, key) for aval in ans ] # Passing in UnzipTracer, which pytype does not recognize as JaxprTracer eqn = pe.new_eqn_recipe(tracers, out_tracers, primitive, params, source_info_util.current()) # pytype: disable=wrong-arg-types for t in out_tracers: t.recipe = eqn is_variable = (key and primitive is harvest.sow_p and params['tag'] == settings.tag) # This block is where UnzipTrace mainly differs from pe.JaxprTrace. Where # JaxprTrace will just return out_tracers, UnzipTrace will record an # additional VariableRecipe into the tracers, which will be used after # the trace is complete to construct init/apply Jaxprs. if is_variable: name, var_in_tracers, var_out_tracers = unzip_registry[primitive]( tracers, out_tracers, **params) variable_recipe = VariableRecipe(name, var_in_tracers, var_out_tracers) for t in out_tracers: t.variable_recipe = variable_recipe if primitive.multiple_results: return out_tracers return out_tracers[0]
import numpy as onp from absl.testing import absltest from absl.testing import parameterized from jax import api from jax import core from jax import numpy as np from jax import test_util as jtu from jax.api import jvp, linearize, vjp, jit from jax.lax import UnshapedArray, ShapedArray, ConcreteArray from jax.tree_util import tree_flatten, tree_unflatten, tree_multimap, tree_reduce from jax.util import partial from jax.interpreters import partial_eval as pe from jax.interpreters import xla _ = pe.PartialVal((UnshapedArray(onp.float32), core.unit)) __ = pe.PartialVal((ShapedArray((), onp.float32), core.unit)) def call(f, *args): return jit(f)(*args) def simple_fun(x, y): return np.sin(x * y) def simple_fun_fanout(x, y): return np.sin(x * y) * x
def _get_partial_value(object): # ShapedArrays are abstract values that carry around # shape and dtype information aval = j_abstract_arrays.ShapedArray(numpy.shape(object), numpy.result_type(object)) result = ji_partial_eval.PartialVal((aval, j_core.unit)) return result
def _partialize(flat_inputs): return map( lambda x: pe.PartialVal( (jax.raise_to_shaped(jc.get_aval(x)), jc.unit)), flat_inputs)
def pv_like(x): return pe.PartialVal((get_aval(x), jc.unit))
def DIABLED_test_print_jaxpr_compound(self): # TODO(dougalm): figure out what jaxpr-tracing api to expose and re-enable pv = pe.PartialVal((ShapedArray((2, 3), onp.float32), core.unit)) print(pe.trace_to_jaxpr(fun_with_call_closure, (pv, ))[0])
def _instantiated_trace_to_jaxpr(fun, avals): pvals = map(lambda aval: pe.PartialVal((aval, unit)), avals) jaxpr, out_pvals, consts = pe.trace_to_jaxpr(fun, pvals, instantiate=True) out_avals, _ = unzip2(out_pvals) return jaxpr, out_avals, consts
def pv_like(x, abstract=True): """Converts a JAX value type into a JAX `PartialVal`.""" if abstract: return pe.PartialVal((get_shaped_aval(x), jax_core.unit)) else: return pe.PartialVal((None, x)) # pytype: disable=wrong-arg-types
def test_simple_trace(self): def foo(x): return np.sin(x) + np.cos(x) pval = pe.PartialVal((ShapedArray((3, 2), onp.float32), core.unit)) check_trace_eval(foo, (pval, ), (onp.random.randn(3, 2), ), pval)
def scan(f, init, xs): """Scan a function over leading array axes while carrying along state. The type signature in brief is .. code-block:: haskell scan :: (c -> a -> (c, b)) -> c -> [a] -> (c, [b]) where we use [t] here to denote the type t with an additional leading axis. That is, if t is an array type then [t] represents the type with an additional leading axis, and if t is a pytree (container) type with array leaves then [t] represents the type with the same pytree structure and corresponding leaves each with an additional leading axis. When both ``a`` and ``b`` are array types, the semantics of ``scan`` are given by this Python implementation:: def scan(f, init, xs): carry = init ys = [] for x in xs: carry, y = f(carry, x) ys.append(y) return carry, np.stack(ys) Unlike that Python version, both ``a`` and ``b`` may be arbitrary pytree types, and so multiple arrays can be scanned over at once and produce multiple output arrays. Also unlike that Python version, ``scan`` is a JAX primitive and is lowered to a single XLA While HLO. That makes it useful for reducing compilation times for jit-compiled functions, since native Python loop constructs in an ``@jit`` function are unrolled, leading to large XLA computations. Args: f: a Python function to be scanned of type ``c -> a -> (c, b)``, meaning that ``f`` accepts two arguments where the first is a value of the loop carry and the second is a slice of ``xs`` along its leading axis, and that ``f`` returns a pair where the first element represents a new value for the loop carry and the second represents a slice of the output. init: an initial loop carry value of type ``c``, which can be a scalar, array, or any pytree (nested Python tuple/list/dict) thereof, representing the initial loop carry value. xs: the value of type ``[a]`` over which to scan along the leading axis, where ``[a]`` can be an array or any pytree (nested Python tuple/list/dict) thereof with consistent leading axis sizes. Returns: A pair of type ``(c, [b])`` where the first element represents the final loop carry value and the second element represents the stacked outputs of the second output of ``f`` when scanned over the leading axis of the inputs. """ (init, xs), in_trees = unzip2(map(pytree_to_jaxtupletree, (init, xs))) f, out_tree = pytree_fun_to_jaxtupletree_fun(lu.wrap_init(f), in_trees) carry_pval = carry_aval, _ = _abstractify(init) xs_aval, _ = _abstractify(xs) x_aval = _demote_aval_rank(xs_aval) x_pval = pe.PartialVal((x_aval, core.unit)) jaxpr, pval_out, consts = pe.trace_to_jaxpr( f, (carry_pval, x_pval), instantiate=True) pv_out, const_out = pval_out assert isinstance(pv_out, core.AbstractValue) and const_out == core.unit if not isinstance(pv_out, core.AbstractTuple) or len(pv_out) != 2: msg = ("scanned function must have signature `c -> a -> (c, b)`, but the " "output was not a pair: got type {}.") raise TypeError(msg.format(pv_out)) carry_aval_out, y_aval = pv_out if carry_aval != carry_aval_out: msg = ("scanned function carry output does not match carry input: " "input carry is {} and output carry is {}.") raise TypeError(msg.format(carry_aval, carry_aval_out)) lifted_jaxpr = pe._closure_convert_jaxpr(jaxpr) consts_aval, _ = _abstractify(core.pack(consts)) in_avals = (consts_aval, carry_aval, x_aval) out_aval = core.AbstractTuple((carry_aval, y_aval)) jaxpr = core.TypedJaxpr(lifted_jaxpr, (), in_avals, out_aval) length = _leading_dim_size(xs) out = scan_p.bind(core.pack(consts), init, xs, forward=True, length=length, jaxpr=jaxpr) return build_tree(out_tree(), out)
def pv_like(x): aval = ShapedArray(onp.shape(x), onp.result_type(x)) return pe.PartialVal((aval, unit))
def pv_like(x, abstract=True): if abstract: return pe.PartialVal((get_shaped_aval(x), jax_core.unit)) else: return pe.PartialVal((None, x)) # pytype: disable=wrong-arg-types