示例#1
0
  def jvp_of_rule_rule(axis_size, in_batched, primals, tangents):
    in_batched_ps, in_batched_ts = in_batched

    mutually_batched = tree_map(operator.and_, in_batched_ps, in_batched_ts)
    extra_batched_ps = tree_map(lambda pb, tb: 0 if pb and not tb else None,
                                in_batched_ps, in_batched_ts)
    extra_batched_ts = tree_map(lambda pb, tb: 0 if tb and not pb else None,
                                in_batched_ps, in_batched_ts)

    out_mutually_batched = lu.Store()
    flat_ps_ts, tree_ps_ts = tree_flatten((primals, tangents))
    flat_extra_batched_ps_ts, tree_ps_ts2 = tree_flatten(
        (extra_batched_ps, extra_batched_ts),
        is_leaf=lambda x: x is None)

    # TODO(frostig): assert these also equal:
    #   treedef_tuple((in_tree, in_tree))
    # once https://github.com/google/jax/issues/9066 is fixed
    assert tree_ps_ts == tree_ps_ts2
    del tree_ps_ts2

    def to_jvp(*primals):
      out, out_batched = call_rule(rule, axis_size, mutually_batched, primals)
      check_vmap_rule_trees(
          rule, out_tree, tree_structure(out), tree_structure(out_batched))
      out_mutually_batched.store(out_batched)
      return out

    def to_vmap_over_extra_batched_dims(primals, tangents):
      return jax.jvp(to_jvp, primals, tangents)

    to_vmap_over_extra_batched_dims_flat, out_tree2 = flatten_fun_nokwargs(
        lu.wrap_init(to_vmap_over_extra_batched_dims),
        tree_ps_ts)

    flat_out_ps_ts, flat_out_axes = vmap_unrestricted(
        to_vmap_over_extra_batched_dims_flat, *flat_ps_ts,
        in_axes=flat_extra_batched_ps_ts,
        axis_name=core.no_axis_name, axis_size=axis_size)

    n, ragged = divmod(len(flat_out_ps_ts), 2)
    assert not ragged
    flat_out_ps, flat_out_ts = flat_out_ps_ts[:n], flat_out_ps_ts[n:]
    flat_out_axes_p, flat_out_axes_t = flat_out_axes[:n], flat_out_axes[n:]
    flat_out_ps = map(maybe_bdim_at_front, flat_out_ps, flat_out_axes_p)
    flat_out_extra_batched_ps = [d is not not_mapped for d in flat_out_axes_p]
    flat_out_ts = map(maybe_bdim_at_front, flat_out_ts, flat_out_axes_t)
    flat_out_extra_batched_ts = [d is not not_mapped for d in flat_out_axes_t]

    out_ps, out_ts = tree_unflatten(
        out_tree2(), [*flat_out_ps, *flat_out_ts])
    out_extra_batched_ps, out_extra_batched_ts = tree_unflatten(
        out_tree2(), [*flat_out_extra_batched_ps, *flat_out_extra_batched_ts])

    out_batched_ps = tree_map(
        operator.or_, out_mutually_batched.val, out_extra_batched_ps)
    out_batched_ts = tree_map(
        operator.or_, out_mutually_batched.val, out_extra_batched_ts)

    return (out_ps, out_ts), (out_batched_ps, out_batched_ts)
示例#2
0
文件: dispatch.py 项目: 0x0is1/jax
def _xla_call_impl(fun: lu.WrappedFun, *args, device, backend, name,
                   donated_invars, inline):
    del inline  # Only used at tracing time
    compiled_fun = _xla_callable(fun, device, backend, name, donated_invars,
                                 *unsafe_map(arg_spec, args))
    try:
        out = compiled_fun(*args)
    except FloatingPointError:
        assert config.jax_debug_nans or config.jax_debug_infs  # compiled_fun can only raise in this case
        print(
            "Invalid value encountered in the output of a jit/pmap-ed function. "
            "Calling the de-optimized version.")
        # We want to run the wrapped function again (after _xla_callable already ran
        # it), but linear_util.WrappedFun instances are meant to be run only once.
        # In addition to re-executing the Python code, which is usually undesirable
        # but which config.jax_debug_nans is meant to opt into, we'll be re-executing
        # any linear_util.py-style side effects, i.e. re-populating Stores created
        # by any transformation_with_aux's applied to fun. Since this is
        # intentional here, to avoid "Store occupied" errors we clone the WrappedFun
        # with empty stores.
        stores = [lu.Store() for _ in fun.stores]
        clone = lu.WrappedFun(fun.f, fun.transforms, stores, fun.params)
        with core.new_sublevel():
            _ = clone.call_wrapped(*args)  # probably won't return
    return out
示例#3
0
文件: dispatch.py 项目: cloudhan/jax
def _xla_call_impl(fun: lu.WrappedFun, *args, device, backend, name,
                   donated_invars, inline, keep_unused: bool):
    del inline  # Only used at tracing time
    arg_specs = unsafe_map(arg_spec, args)
    if fun.in_type is not None:
        arg_specs = [(None, *xs) for _, *xs in arg_specs]
    compiled_fun = _xla_callable(fun, device, backend, name, donated_invars,
                                 keep_unused, *arg_specs)
    try:
        return compiled_fun(*args)
    except FloatingPointError:
        assert config.jax_debug_nans or config.jax_debug_infs  # compiled_fun can only raise in this case
        print(
            "Invalid value encountered in the output of a jit-decorated function. "
            "Calling the de-optimized version.")
        # We want to run the wrapped function again (after _xla_callable already ran
        # it), but linear_util.WrappedFun instances are meant to be run only once.
        # In addition to re-executing the Python code, which is usually undesirable
        # but which config.jax_debug_nans is meant to opt into, we'll be
        # re-executing any linear_util.py-style side effects, i.e. re-populating
        # Stores created by any transformation_with_aux's applied to fun. Since this
        # is intentional here, to avoid "Store occupied" errors we clone the
        # WrappedFun with empty stores.
        stores = [lu.Store() for _ in fun.stores]
        clone = lu.WrappedFun(fun.f, fun.transforms, stores, fun.params,
                              fun.in_type)

        with core.new_sublevel():
            _ = clone.call_wrapped(*args)  # may raise, not return

        # If control reaches this line, we got a NaN on the output of `compiled_fun`
        # but not `clone.call_wrapped` on the same arguments. Let's tell the user.
        fun_info = pe.fun_sourceinfo(fun.f)
        msg = (
            "An invalid value was encountered in the output of the "
            f"`jit`-decorated function {fun_info}. Because "
            "config.jax_debug_nans and/or config.jax_debug_infs is set, the "
            "de-optimized function (i.e., the function as if the `jit` "
            "decorator were removed) was called in an attempt to get a more "
            "precise error message. However, the de-optimized function did not "
            "produce invalid values during its execution. This behavior can "
            "result from `jit` optimizations causing the invalud value to be "
            "produced. It may also arise from having nan/inf constants as "
            "outputs, like `jax.jit(lambda ...: jax.numpy.nan)(...)`. "
            "\n\n"
            "It may be possible to avoid the invalid value by removing the "
            "`jit` decorator, at the cost of losing optimizations. "
            "\n\n"
            "If you see this error, consider opening a bug report at "
            "https://github.com/google/jax.")
        raise FloatingPointError(msg)