示例#1
0
文件: bites.py 项目: zjwang6/jcvi
def scenario(args):
    """
    %prog scenario

    Illustration of the two-step genome merger process for B. rapa companion paper.
    """
    p = OptionParser(__doc__)
    opts, args = p.parse_args()

    fig = plt.figure(1, (5, 5))
    root = fig.add_axes([0, 0, 1, 1])

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    # Layout format: (x, y, label, (chr lengths))
    anc = (0.5, 0.9, "Ancestor", (1, ))
    s1 = (0.2, 0.6, "Genome I", (1, ))
    s2 = (0.5, 0.6, "Genome II", (1, ))
    s3 = (0.8, 0.6, "Genome III", (1, ))
    tetra = (0.35, 0.4, "Tetraploid I / II", (0.5, 0.9))
    hexa = (0.5, 0.1, "Hexaploid I / II / III", (0.36, 0.46, 0.9))
    labels = (anc, s1, s2, s3, tetra, hexa)
    connections = (
        (anc, s1),
        (anc, s2),
        (anc, s3),
        (s1, tetra),
        (s2, tetra),
        (tetra, hexa),
        (s3, hexa),
    )

    xinterval = 0.02
    yratio = 0.05
    for xx, yy, label, chrl in labels:
        # RoundLabel(root, xx, yy, label)
        root.text(xx, yy, label, ha="center", va="center")
        offset = len(label) * 0.012
        for i, c in enumerate(chrl):
            ya = yy + yratio * c
            yb = yy - yratio * c
            Chromosome(root, xx - offset + i * xinterval, ya, yb, width=0.01)

    # Comments
    comments = ((0.15, 0.33, "II dominant"), (0.25, 0.03, "III dominant"))

    for xx, yy, c in comments:
        root.text(xx, yy, c, size=9, ha="center", va="center")

    # Branches
    tip = 0.04
    for a, b in connections:
        xa, ya, la, chra = a
        xb, yb, lb, chrb = b
        plt.plot((xa, xb), (ya - tip, yb + 2 * tip), "k-", lw=2, alpha=0.5)

    figname = fname() + ".pdf"
    savefig(figname, dpi=300)
示例#2
0
文件: tsp.py 项目: zhaotao1987/jcvi
def plot_data(x, y, tour, M):
    from jcvi.graphics.base import plt, savefig
    plt.plot(x, y, "ro")
    for ia, ib in pairwise(tour):
        plt.plot((x[ia], x[ib]), (y[ia], y[ib]), "r-")

    score = evaluate(tour, M)
    plt.title("Score={0:.2f}".format(score))

    savefig("demo.pdf")
示例#3
0
文件: tsp.py 项目: Hensonmw/jcvi
def plot_data(x, y, tour, M):
    from jcvi.graphics.base import plt, savefig
    plt.plot(x, y, "ro")
    for ia, ib in pairwise(tour):
        plt.plot((x[ia], x[ib]), (y[ia], y[ib]), "r-")

    score = evaluate(tour, M)
    plt.title("Score={0:.2f}".format(score))

    savefig("demo.pdf")
示例#4
0
文件: bites.py 项目: Hensonmw/jcvi
def scenario(args):
    """
    %prog scenario

    Illustration of the two-step genome merger process for B. rapa companion paper.
    """
    p = OptionParser(__doc__)
    opts, args = p.parse_args()

    fig = plt.figure(1, (5, 5))
    root = fig.add_axes([0, 0, 1, 1])

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    # Layout format: (x, y, label, (chr lengths))
    anc = (.5, .9, "Ancestor", (1,))
    s1 = (.2, .6, "Genome I", (1,))
    s2 = (.5, .6, "Genome II", (1,))
    s3 = (.8, .6, "Genome III", (1,))
    tetra = (.35, .4, "Tetraploid I / II", (.5, .9))
    hexa = (.5, .1, "Hexaploid I / II / III", (.36, .46, .9))
    labels = (anc, s1, s2, s3, tetra, hexa)
    connections = ((anc, s1), (anc, s2), (anc, s3),\
            (s1, tetra), (s2, tetra),
            (tetra, hexa), (s3, hexa))

    xinterval = .02
    yratio = .05
    for xx, yy, label, chrl in labels:
        #RoundLabel(root, xx, yy, label)
        root.text(xx, yy, label, ha="center", va="center")
        offset = len(label) * .012
        for i, c in enumerate(chrl):
            ya = yy + yratio * c
            yb = yy - yratio * c
            Chromosome(root, xx - offset + i * xinterval, ya, yb, width=.01)

    # Comments
    comments = ((.15, .33, "II dominant"),
                (.25, .03, "III dominant"))

    for xx, yy, c in comments:
        root.text(xx, yy, c, size=9, ha="center", va="center")

    # Branches
    tip = .04
    for a, b in connections:
        xa, ya, la, chra = a
        xb, yb, lb, chrb = b
        plt.plot((xa, xb), (ya - tip, yb + 2 * tip), 'k-', lw=2, alpha=.5)

    figname = fname() + ".pdf"
    savefig(figname, dpi=300)
示例#5
0
文件: bites.py 项目: Hensonmw/jcvi
def excision(args):
    """
    %prog excision

    Illustrate the mechanism of illegitimate recombination.
    """
    p = OptionParser(__doc__)
    opts, args = p.parse_args(args)

    fig = plt.figure(1, (5, 5))
    root = fig.add_axes([0, 0, 1, 1])

    plt.plot((.2, .8), (.6, .6), 'r-', lw=3)
    plt.plot((.4, .6), (.6, .6), 'b>-', mfc='g', mec='w', ms=12, lw=3)
    plt.plot((.3, .7), (.5, .5), 'r-', lw=3)
    plt.plot((.5, ), (.5, ), 'b>-', mfc='g', mec='w', ms=12, lw=3)

    # Circle excision
    plt.plot((.5, ), (.45, ), 'b>-', mfc='g', mec='w', ms=12, lw=3)
    circle = CirclePolygon((.5, .4), .05, fill=False, lw=3, ec="b")
    root.add_patch(circle)

    arrow_dist = .07
    ar_xpos, ar_ypos = .5, .52
    root.annotate(" ", (ar_xpos, ar_ypos),
            (ar_xpos, ar_ypos + arrow_dist),
            arrowprops=arrowprops)

    RoundLabel(root, .2, .64, "Gene")
    RoundLabel(root, .3, .54, "Excision")

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    figname = fname() + ".pdf"
    savefig(figname, dpi=300)
示例#6
0
文件: bites.py 项目: zjwang6/jcvi
def excision(args):
    """
    %prog excision

    Illustrate the mechanism of illegitimate recombination.
    """
    p = OptionParser(__doc__)
    opts, args = p.parse_args(args)

    fig = plt.figure(1, (5, 5))
    root = fig.add_axes([0, 0, 1, 1])

    plt.plot((0.2, 0.8), (0.6, 0.6), "r-", lw=3)
    plt.plot((0.4, 0.6), (0.6, 0.6), "b>-", mfc="g", mec="w", ms=12, lw=3)
    plt.plot((0.3, 0.7), (0.5, 0.5), "r-", lw=3)
    plt.plot((0.5, ), (0.5, ), "b>-", mfc="g", mec="w", ms=12, lw=3)

    # Circle excision
    plt.plot((0.5, ), (0.45, ), "b>-", mfc="g", mec="w", ms=12, lw=3)
    circle = CirclePolygon((0.5, 0.4), 0.05, fill=False, lw=3, ec="b")
    root.add_patch(circle)

    arrow_dist = 0.07
    ar_xpos, ar_ypos = 0.5, 0.52
    root.annotate(" ", (ar_xpos, ar_ypos), (ar_xpos, ar_ypos + arrow_dist),
                  arrowprops=arrowprops)

    RoundLabel(root, 0.2, 0.64, "Gene")
    RoundLabel(root, 0.3, 0.54, "Excision")

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    figname = fname() + ".pdf"
    savefig(figname, dpi=300)
示例#7
0
def histogram(args):
    """
    %prog histogram meryl.histogram species K

    Plot the histogram based on meryl K-mer distribution, species and N are
    only used to annotate the graphic.
    """
    p = OptionParser(histogram.__doc__)
    p.add_option(
        "--vmin",
        dest="vmin",
        default=1,
        type="int",
        help="minimum value, inclusive",
    )
    p.add_option(
        "--vmax",
        dest="vmax",
        default=100,
        type="int",
        help="maximum value, inclusive",
    )
    p.add_option(
        "--pdf",
        default=False,
        action="store_true",
        help="Print PDF instead of ASCII plot",
    )
    p.add_option(
        "--method",
        choices=("nbinom", "allpaths"),
        default="nbinom",
        help=
        "'nbinom' - slow but more accurate for het or polyploid genome; 'allpaths' - fast and works for homozygous enomes",
    )
    p.add_option(
        "--maxiter",
        default=100,
        type="int",
        help="Max iterations for optimization. Only used with --method nbinom",
    )
    p.add_option("--coverage",
                 default=0,
                 type="int",
                 help="Kmer coverage [default: auto]")
    p.add_option(
        "--nopeaks",
        default=False,
        action="store_true",
        help="Do not annotate K-mer peaks",
    )
    opts, args, iopts = p.set_image_options(args, figsize="7x7")

    if len(args) != 3:
        sys.exit(not p.print_help())

    histfile, species, N = args
    method = opts.method
    vmin, vmax = opts.vmin, opts.vmax
    ascii = not opts.pdf
    peaks = not opts.nopeaks and method == "allpaths"
    N = int(N)

    if histfile.rsplit(".", 1)[-1] in ("mcdat", "mcidx"):
        logging.debug("CA kmer index found")
        histfile = merylhistogram(histfile)

    ks = KmerSpectrum(histfile)
    method_info = ks.analyze(K=N, maxiter=opts.maxiter, method=method)

    Total_Kmers = int(ks.totalKmers)
    coverage = opts.coverage
    Kmer_coverage = ks.lambda_ if not coverage else coverage
    Genome_size = int(round(Total_Kmers * 1.0 / Kmer_coverage))

    Total_Kmers_msg = "Total {0}-mers: {1}".format(N, thousands(Total_Kmers))
    Kmer_coverage_msg = "{0}-mer coverage: {1:.1f}x".format(N, Kmer_coverage)
    Genome_size_msg = "Estimated genome size: {0:.1f} Mb".format(Genome_size /
                                                                 1e6)
    Repetitive_msg = ks.repetitive
    SNPrate_msg = ks.snprate

    for msg in (Total_Kmers_msg, Kmer_coverage_msg, Genome_size_msg):
        print(msg, file=sys.stderr)

    x, y = ks.get_xy(vmin, vmax)
    title = "{0} {1}-mer histogram".format(species, N)

    if ascii:
        asciiplot(x, y, title=title)
        return Genome_size

    plt.figure(1, (iopts.w, iopts.h))
    plt.bar(x, y, fc="#b2df8a", lw=0)
    # Plot the negative binomial fit
    if method == "nbinom":
        generative_model = method_info["generative_model"]
        GG = method_info["Gbins"]
        ll = method_info["lambda"]
        rr = method_info["rho"]
        kf_range = method_info["kf_range"]
        stacked = generative_model(GG, ll, rr)
        plt.plot(
            kf_range,
            stacked,
            ":",
            color="#6a3d9a",
            lw=2,
        )

    ax = plt.gca()

    if peaks:  # Only works for method 'allpaths'
        t = (ks.min1, ks.max1, ks.min2, ks.max2, ks.min3)
        tcounts = [(x, y) for x, y in ks.counts if x in t]
        if tcounts:
            x, y = zip(*tcounts)
            tcounts = dict(tcounts)
            plt.plot(x, y, "ko", lw=3, mec="k", mfc="w")
            ax.text(ks.max1, tcounts[ks.max1], "SNP peak")
            ax.text(ks.max2, tcounts[ks.max2], "Main peak")

    ymin, ymax = ax.get_ylim()
    ymax = ymax * 7 / 6
    if method == "nbinom":
        # Plot multiple CN locations, CN1, CN2, ... up to ploidy
        cn_color = "#a6cee3"
        for i in range(1, ks.ploidy + 1):
            x = i * ks.lambda_
            plt.plot((x, x), (0, ymax), "-.", color=cn_color)
            plt.text(
                x,
                ymax * 0.95,
                "CN{}".format(i),
                ha="right",
                va="center",
                color=cn_color,
                rotation=90,
            )

    messages = [
        Total_Kmers_msg,
        Kmer_coverage_msg,
        Genome_size_msg,
        Repetitive_msg,
        SNPrate_msg,
    ]
    if method == "nbinom":
        messages += [ks.ploidy_message] + ks.copy_messages
    write_messages(ax, messages)

    ax.set_title(markup(title))
    ax.set_xlim((0, vmax))
    ax.set_ylim((0, ymax))
    adjust_spines(ax, ["left", "bottom"], outward=True)
    xlabel, ylabel = "Coverage (X)", "Counts"
    ax.set_xlabel(xlabel)
    ax.set_ylabel(ylabel)
    set_human_axis(ax)

    imagename = histfile.split(".")[0] + "." + iopts.format
    savefig(imagename, dpi=100)

    return Genome_size
示例#8
0
文件: kmer.py 项目: biologyguy/jcvi
def histogram(args):
    """
    %prog histogram meryl.histogram species K

    Plot the histogram based on meryl K-mer distribution, species and N are
    only used to annotate the graphic. Find out totalKmers when running
    kmer.meryl().
    """
    p = OptionParser(histogram.__doc__)
    p.add_option("--vmin",
                 dest="vmin",
                 default=1,
                 type="int",
                 help="minimum value, inclusive [default: %default]")
    p.add_option("--vmax",
                 dest="vmax",
                 default=100,
                 type="int",
                 help="maximum value, inclusive [default: %default]")
    p.add_option("--pdf",
                 default=False,
                 action="store_true",
                 help="Print PDF instead of ASCII plot [default: %default]")
    p.add_option("--coverage",
                 default=0,
                 type="int",
                 help="Kmer coverage [default: auto]")
    p.add_option("--nopeaks",
                 default=False,
                 action="store_true",
                 help="Do not annotate K-mer peaks")
    opts, args = p.parse_args(args)

    if len(args) != 3:
        sys.exit(not p.print_help())

    histfile, species, N = args
    ascii = not opts.pdf
    peaks = not opts.nopeaks
    N = int(N)

    ks = KmerSpectrum(histfile)
    ks.analyze(K=N)

    Total_Kmers = int(ks.totalKmers)
    coverage = opts.coverage
    Kmer_coverage = ks.max2 if not coverage else coverage
    Genome_size = int(round(Total_Kmers * 1. / Kmer_coverage))

    Total_Kmers_msg = "Total {0}-mers: {1}".format(N, thousands(Total_Kmers))
    Kmer_coverage_msg = "{0}-mer coverage: {1}".format(N, Kmer_coverage)
    Genome_size_msg = "Estimated genome size: {0:.1f}Mb".\
                        format(Genome_size / 1e6)
    Repetitive_msg = ks.repetitive
    SNPrate_msg = ks.snprate

    for msg in (Total_Kmers_msg, Kmer_coverage_msg, Genome_size_msg):
        print >> sys.stderr, msg

    x, y = ks.get_xy(opts.vmin, opts.vmax)
    title = "{0} genome {1}-mer histogram".format(species, N)

    if ascii:
        asciiplot(x, y, title=title)
        return Genome_size

    plt.figure(1, (6, 6))
    plt.plot(x, y, 'g-', lw=2, alpha=.5)
    ax = plt.gca()

    if peaks:
        t = (ks.min1, ks.max1, ks.min2, ks.max2, ks.min3)
        tcounts = [(x, y) for x, y in ks.counts if x in t]
        x, y = zip(*tcounts)
        tcounts = dict(tcounts)
        plt.plot(x, y, 'ko', lw=2, mec='k', mfc='w')
        ax.text(ks.max1, tcounts[ks.max1], "SNP peak", va="top")
        ax.text(ks.max2, tcounts[ks.max2], "Main peak")

    tc = "gray"
    axt = ax.transAxes
    ax.text(.95, .95, Total_Kmers_msg, color=tc, transform=axt, ha="right")
    ax.text(.95, .9, Kmer_coverage_msg, color=tc, transform=axt, ha="right")
    ax.text(.95, .85, Genome_size_msg, color=tc, transform=axt, ha="right")
    ax.text(.95, .8, Repetitive_msg, color=tc, transform=axt, ha="right")
    ax.text(.95, .75, SNPrate_msg, color=tc, transform=axt, ha="right")

    ymin, ymax = ax.get_ylim()
    ymax = ymax * 7 / 6

    ax.set_title(markup(title), color='r')
    ax.set_ylim((ymin, ymax))
    xlabel, ylabel = "Coverage (X)", "Counts"
    ax.set_xlabel(xlabel, color='r')
    ax.set_ylabel(ylabel, color='r')
    set_human_axis(ax)

    imagename = histfile.split(".")[0] + ".pdf"
    savefig(imagename, dpi=100)

    return Genome_size
示例#9
0
文件: kmer.py 项目: arvin580/jcvi
def histogram(args):
    """
    %prog histogram meryl.histogram species K

    Plot the histogram based on meryl K-mer distribution, species and N are
    only used to annotate the graphic. Find out totalKmers when running
    kmer.meryl().
    """
    p = OptionParser(histogram.__doc__)
    p.add_option("--vmin", dest="vmin", default=1, type="int", help="minimum value, inclusive [default: %default]")
    p.add_option("--vmax", dest="vmax", default=100, type="int", help="maximum value, inclusive [default: %default]")
    p.add_option(
        "--pdf", default=False, action="store_true", help="Print PDF instead of ASCII plot [default: %default]"
    )
    p.add_option("--coverage", default=0, type="int", help="Kmer coverage [default: auto]")
    p.add_option("--nopeaks", default=False, action="store_true", help="Do not annotate K-mer peaks")
    opts, args = p.parse_args(args)

    if len(args) != 3:
        sys.exit(not p.print_help())

    histfile, species, N = args
    ascii = not opts.pdf
    peaks = not opts.nopeaks
    N = int(N)

    if histfile.rsplit(".", 1)[-1] in ("mcdat", "mcidx"):
        logging.debug("CA kmer index found")
        histfile = meryl([histfile])

    ks = KmerSpectrum(histfile)
    ks.analyze(K=N)

    Total_Kmers = int(ks.totalKmers)
    coverage = opts.coverage
    Kmer_coverage = ks.max2 if not coverage else coverage
    Genome_size = int(round(Total_Kmers * 1.0 / Kmer_coverage))

    Total_Kmers_msg = "Total {0}-mers: {1}".format(N, thousands(Total_Kmers))
    Kmer_coverage_msg = "{0}-mer coverage: {1}".format(N, Kmer_coverage)
    Genome_size_msg = "Estimated genome size: {0:.1f}Mb".format(Genome_size / 1e6)
    Repetitive_msg = ks.repetitive
    SNPrate_msg = ks.snprate

    for msg in (Total_Kmers_msg, Kmer_coverage_msg, Genome_size_msg):
        print >> sys.stderr, msg

    x, y = ks.get_xy(opts.vmin, opts.vmax)
    title = "{0} {1}-mer histogram".format(species, N)

    if ascii:
        asciiplot(x, y, title=title)
        return Genome_size

    plt.figure(1, (6, 6))
    plt.plot(x, y, "g-", lw=2, alpha=0.5)
    ax = plt.gca()

    if peaks:
        t = (ks.min1, ks.max1, ks.min2, ks.max2, ks.min3)
        tcounts = [(x, y) for x, y in ks.counts if x in t]
        if tcounts:
            x, y = zip(*tcounts)
            tcounts = dict(tcounts)
            plt.plot(x, y, "ko", lw=2, mec="k", mfc="w")
            ax.text(ks.max1, tcounts[ks.max1], "SNP peak", va="top")
            ax.text(ks.max2, tcounts[ks.max2], "Main peak")

    messages = [Total_Kmers_msg, Kmer_coverage_msg, Genome_size_msg, Repetitive_msg, SNPrate_msg]
    write_messages(ax, messages)

    ymin, ymax = ax.get_ylim()
    ymax = ymax * 7 / 6

    ax.set_title(markup(title))
    ax.set_ylim((ymin, ymax))
    xlabel, ylabel = "Coverage (X)", "Counts"
    ax.set_xlabel(xlabel)
    ax.set_ylabel(ylabel)
    set_human_axis(ax)

    imagename = histfile.split(".")[0] + ".pdf"
    savefig(imagename, dpi=100)

    return Genome_size
示例#10
0
文件: kmer.py 项目: zachary-zzc/jcvi
def histogram(args):
    """
    %prog histogram meryl.histogram species K

    Plot the histogram based on meryl K-mer distribution, species and N are
    only used to annotate the graphic. Find out totalKmers when running
    kmer.meryl().
    """
    p = OptionParser(histogram.__doc__)
    p.add_option("--vmin", dest="vmin", default=1, type="int",
            help="minimum value, inclusive [default: %default]")
    p.add_option("--vmax", dest="vmax", default=100, type="int",
            help="maximum value, inclusive [default: %default]")
    p.add_option("--pdf", default=False, action="store_true",
            help="Print PDF instead of ASCII plot [default: %default]")
    p.add_option("--coverage", default=0, type="int",
            help="Kmer coverage [default: auto]")
    p.add_option("--nopeaks", default=False, action="store_true",
            help="Do not annotate K-mer peaks")
    opts, args = p.parse_args(args)

    if len(args) != 3:
        sys.exit(not p.print_help())

    histfile, species, N = args
    N = int(N)
    KMERYL, KSOAP, KALLPATHS = range(3)
    kformats = ("Meryl", "Soap", "AllPaths")
    kformat = KMERYL

    ascii = not opts.pdf
    peaks = not opts.nopeaks
    fp = open(histfile)
    hist = {}
    totalKmers = 0

    # Guess the format of the Kmer histogram
    for row in fp:
        if row.startswith("# 1:"):
            kformat = KALLPATHS
            break
        if len(row.split()) == 1:
            kformat = KSOAP
            break
    fp.seek(0)

    logging.debug("Guessed format: {0}".format(kformats[kformat]))

    data = []
    for rowno, row in enumerate(fp):
        if row[0] == '#':
            continue
        if kformat == KSOAP:
            K = rowno + 1
            counts = int(row.strip())
        else:  # meryl histogram
            K, counts = row.split()[:2]
            K, counts = int(K), int(counts)

        Kcounts = K * counts
        totalKmers += Kcounts
        hist[K] = Kcounts
        data.append((K, counts))

    covmax = 1000000
    ks = KmerSpectrum(data)
    ks.analyze(K=N, covmax=covmax)

    Total_Kmers = int(totalKmers)
    coverage = opts.coverage
    Kmer_coverage = ks.max2 if not coverage else coverage
    Genome_size = int(round(Total_Kmers * 1. / Kmer_coverage))

    Total_Kmers_msg = "Total {0}-mers: {1}".format(N, Total_Kmers)
    Kmer_coverage_msg = "{0}-mer coverage: {1}".format(N, Kmer_coverage)
    Genome_size_msg = "Estimated genome size: {0:.1f}Mb".\
                        format(Genome_size / 1e6)
    Repetitive_msg = ks.repetitive
    SNPrate_msg = ks.snprate

    for msg in (Total_Kmers_msg, Kmer_coverage_msg, Genome_size_msg):
        print >> sys.stderr, msg

    counts = sorted((a, b) for a, b in hist.items() \
                    if opts.vmin <= a <= opts.vmax)
    x, y = zip(*counts)
    title = "{0} genome {1}-mer histogram".format(species, N)

    if ascii:
        asciiplot(x, y, title=title)
        return Genome_size

    plt.figure(1, (6, 6))
    plt.plot(x, y, 'g-', lw=2, alpha=.5)
    ax = plt.gca()

    t = (ks.min1, ks.max1, ks.min2, ks.max2, ks.min3)
    tcounts = [(x, y) for x, y in counts if x in t]
    x, y = zip(*tcounts)
    plt.plot(x, y, 'ko', lw=2, mec='k', mfc='w')
    tcounts = dict(tcounts)

    if peaks:
        ax.text(ks.max1, tcounts[ks.max1], "SNP peak", va="top")
        ax.text(ks.max2, tcounts[ks.max2], "Main peak")

    tc = "gray"
    axt = ax.transAxes
    ax.text(.95, .95, Total_Kmers_msg, color=tc, transform=axt, ha="right")
    ax.text(.95, .9, Kmer_coverage_msg, color=tc, transform=axt, ha="right")
    ax.text(.95, .85, Genome_size_msg, color=tc, transform=axt, ha="right")
    ax.text(.95, .8, Repetitive_msg, color=tc, transform=axt, ha="right")
    ax.text(.95, .75, SNPrate_msg, color=tc, transform=axt, ha="right")

    ymin, ymax = ax.get_ylim()
    ymax = ymax * 7 / 6

    ax.set_title(markup(title), color='r')
    ax.set_ylim((ymin, ymax))
    xlabel, ylabel = "Coverage (X)", "Counts"
    ax.set_xlabel(xlabel, color='r')
    ax.set_ylabel(ylabel, color='r')
    set_human_axis(ax)

    imagename = histfile.split(".")[0] + ".pdf"
    savefig(imagename, dpi=100)

    return Genome_size
示例#11
0
def histogram(args):
    """
    %prog histogram meryl.histogram species K

    Plot the histogram based on meryl K-mer distribution, species and N are
    only used to annotate the graphic.
    """
    p = OptionParser(histogram.__doc__)
    p.add_option(
        "--vmin",
        dest="vmin",
        default=1,
        type="int",
        help="minimum value, inclusive",
    )
    p.add_option(
        "--vmax",
        dest="vmax",
        default=100,
        type="int",
        help="maximum value, inclusive",
    )
    p.add_option(
        "--pdf",
        default=False,
        action="store_true",
        help="Print PDF instead of ASCII plot",
    )
    p.add_option("--coverage",
                 default=0,
                 type="int",
                 help="Kmer coverage [default: auto]")
    p.add_option(
        "--nopeaks",
        default=False,
        action="store_true",
        help="Do not annotate K-mer peaks",
    )
    opts, args = p.parse_args(args)

    if len(args) != 3:
        sys.exit(not p.print_help())

    histfile, species, N = args
    ascii = not opts.pdf
    peaks = not opts.nopeaks
    N = int(N)

    if histfile.rsplit(".", 1)[-1] in ("mcdat", "mcidx"):
        logging.debug("CA kmer index found")
        histfile = merylhistogram(histfile)

    ks = KmerSpectrum(histfile)
    ks.analyze(K=N)

    Total_Kmers = int(ks.totalKmers)
    coverage = opts.coverage
    Kmer_coverage = ks.max2 if not coverage else coverage
    Genome_size = int(round(Total_Kmers * 1.0 / Kmer_coverage))

    Total_Kmers_msg = "Total {0}-mers: {1}".format(N, thousands(Total_Kmers))
    Kmer_coverage_msg = "{0}-mer coverage: {1}".format(N, Kmer_coverage)
    Genome_size_msg = "Estimated genome size: {0:.1f}Mb".format(Genome_size /
                                                                1e6)
    Repetitive_msg = ks.repetitive
    SNPrate_msg = ks.snprate

    for msg in (Total_Kmers_msg, Kmer_coverage_msg, Genome_size_msg):
        print(msg, file=sys.stderr)

    x, y = ks.get_xy(opts.vmin, opts.vmax)
    title = "{0} {1}-mer histogram".format(species, N)

    if ascii:
        asciiplot(x, y, title=title)
        return Genome_size

    plt.figure(1, (6, 6))
    plt.plot(x, y, "g-", lw=2, alpha=0.5)
    ax = plt.gca()

    if peaks:
        t = (ks.min1, ks.max1, ks.min2, ks.max2, ks.min3)
        tcounts = [(x, y) for x, y in ks.counts if x in t]
        if tcounts:
            x, y = zip(*tcounts)
            tcounts = dict(tcounts)
            plt.plot(x, y, "ko", lw=2, mec="k", mfc="w")
            ax.text(ks.max1, tcounts[ks.max1], "SNP peak", va="top")
            ax.text(ks.max2, tcounts[ks.max2], "Main peak")

    messages = [
        Total_Kmers_msg,
        Kmer_coverage_msg,
        Genome_size_msg,
        Repetitive_msg,
        SNPrate_msg,
    ]
    write_messages(ax, messages)

    ymin, ymax = ax.get_ylim()
    ymax = ymax * 7 / 6

    ax.set_title(markup(title))
    ax.set_ylim((ymin, ymax))
    xlabel, ylabel = "Coverage (X)", "Counts"
    ax.set_xlabel(xlabel)
    ax.set_ylabel(ylabel)
    set_human_axis(ax)

    imagename = histfile.split(".")[0] + ".pdf"
    savefig(imagename, dpi=100)

    return Genome_size
示例#12
0
def histogram(args):
    """
    %prog histogram meryl.histogram species K

    Plot the histogram based on meryl K-mer distribution, species and N are
    only used to annotate the graphic. Find out totalKmers when running
    kmer.meryl().
    """
    p = OptionParser(histogram.__doc__)
    p.add_option("--vmin",
                 dest="vmin",
                 default=1,
                 type="int",
                 help="minimum value, inclusive [default: %default]")
    p.add_option("--vmax",
                 dest="vmax",
                 default=100,
                 type="int",
                 help="maximum value, inclusive [default: %default]")
    p.add_option("--pdf",
                 default=False,
                 action="store_true",
                 help="Print PDF instead of ASCII plot [default: %default]")
    p.add_option("--coverage",
                 default=0,
                 type="int",
                 help="Kmer coverage [default: auto]")
    p.add_option("--nopeaks",
                 default=False,
                 action="store_true",
                 help="Do not annotate K-mer peaks")
    opts, args = p.parse_args(args)

    if len(args) != 3:
        sys.exit(not p.print_help())

    histfile, species, N = args
    N = int(N)
    KMERYL, KSOAP, KALLPATHS = range(3)
    kformats = ("Meryl", "Soap", "AllPaths")
    kformat = KMERYL

    ascii = not opts.pdf
    peaks = not opts.nopeaks
    fp = open(histfile)
    hist = {}
    totalKmers = 0

    # Guess the format of the Kmer histogram
    for row in fp:
        if row.startswith("# 1:"):
            kformat = KALLPATHS
            break
        if len(row.split()) == 1:
            kformat = KSOAP
            break
    fp.seek(0)

    logging.debug("Guessed format: {0}".format(kformats[kformat]))

    data = []
    for rowno, row in enumerate(fp):
        if row[0] == '#':
            continue
        if kformat == KSOAP:
            K = rowno + 1
            counts = int(row.strip())
        else:  # meryl histogram
            K, counts = row.split()[:2]
            K, counts = int(K), int(counts)

        Kcounts = K * counts
        totalKmers += Kcounts
        hist[K] = Kcounts
        data.append((K, counts))

    covmax = 1000000
    ks = KmerSpectrum(data)
    ks.analyze(K=N, covmax=covmax)

    Total_Kmers = int(totalKmers)
    coverage = opts.coverage
    Kmer_coverage = ks.max2 if not coverage else coverage
    Genome_size = Total_Kmers * 1. / Kmer_coverage / 1e6

    Total_Kmers_msg = "Total {0}-mers: {1}".format(N, Total_Kmers)
    Kmer_coverage_msg = "{0}-mer coverage: {1}".format(N, Kmer_coverage)
    Genome_size_msg = "Estimated genome size: {0:.1f}Mb".format(Genome_size)
    Repetitive_msg = ks.repetitive
    SNPrate_msg = ks.snprate

    for msg in (Total_Kmers_msg, Kmer_coverage_msg, Genome_size_msg):
        print >> sys.stderr, msg

    counts = sorted((a, b) for a, b in hist.items() \
                    if opts.vmin <= a <= opts.vmax)
    x, y = zip(*counts)
    title = "{0} genome {1}-mer histogram".format(species, N)

    if ascii:
        return asciiplot(x, y, title=title)

    plt.figure(1, (6, 6))
    plt.plot(x, y, 'g-', lw=2, alpha=.5)
    ax = plt.gca()

    t = (ks.min1, ks.max1, ks.min2, ks.max2, ks.min3)
    tcounts = [(x, y) for x, y in counts if x in t]
    x, y = zip(*tcounts)
    plt.plot(x, y, 'ko', lw=2, mec='k', mfc='w')
    tcounts = dict(tcounts)

    if peaks:
        ax.text(ks.max1, tcounts[ks.max1], "SNP peak", va="top")
        ax.text(ks.max2, tcounts[ks.max2], "Main peak")

    tc = "gray"
    axt = ax.transAxes
    ax.text(.95, .95, Total_Kmers_msg, color=tc, transform=axt, ha="right")
    ax.text(.95, .9, Kmer_coverage_msg, color=tc, transform=axt, ha="right")
    ax.text(.95, .85, Genome_size_msg, color=tc, transform=axt, ha="right")
    ax.text(.95, .8, Repetitive_msg, color=tc, transform=axt, ha="right")
    ax.text(.95, .75, SNPrate_msg, color=tc, transform=axt, ha="right")

    ymin, ymax = ax.get_ylim()
    ymax = ymax * 7 / 6

    ax.set_title(markup(title), color='r')
    ax.set_ylim((ymin, ymax))
    xlabel, ylabel = "Coverage (X)", "Counts"
    ax.set_xlabel(xlabel, color='r')
    ax.set_ylabel(ylabel, color='r')
    set_human_axis(ax)

    imagename = histfile.split(".")[0] + ".pdf"
    savefig(imagename, dpi=100)
示例#13
0
文件: bites.py 项目: Hensonmw/jcvi
def bites(args):
    """
    %prog bites

    Illustrate the pipeline for automated bite discovery.
    """

    p = OptionParser(__doc__)
    opts, args = p.parse_args()

    fig = plt.figure(1, (6, 6))
    root = fig.add_axes([0, 0, 1, 1])

    # HSP pairs
    hsps = (((50, 150), (60, 180)),
           ((190, 250), (160, 235)),
           ((300, 360), (270, 330)),
           ((430, 470), (450, 490)),
           ((570, 620), (493, 543)),
           ((540, 555), (370, 385)),  # non-collinear hsps
          )

    titlepos = (.9, .65, .4)
    titles = ("Compare orthologous region",
              "Find collinear HSPs",
              "Scan paired gaps")
    ytip = .01
    mrange = 650.
    m = lambda x: x / mrange * .7 + .1
    for i, (ya, title) in enumerate(zip(titlepos, titles)):
        yb = ya - .1
        plt.plot((.1, .8), (ya, ya), "-", color="gray", lw=2, zorder=1)
        plt.plot((.1, .8), (yb, yb), "-", color="gray", lw=2, zorder=1)
        RoundLabel(root, .5, ya + 4 * ytip, title)
        root.text(.9, ya, "A. thaliana", ha="center", va="center")
        root.text(.9, yb, "B. rapa", ha="center", va="center")
        myhsps = hsps
        if i >= 1:
            myhsps = hsps[:-1]
        for (a, b), (c, d) in myhsps:
            a, b, c, d = [m(x) for x in (a, b, c, d)]
            r1 = Rectangle((a, ya - ytip), b - a, 2 * ytip, fc='r', lw=0, zorder=2)
            r2 = Rectangle((c, yb - ytip), d - c, 2 * ytip, fc='r', lw=0, zorder=2)
            r3 = Rectangle((a, ya - ytip), b - a, 2 * ytip, fill=False, zorder=3)
            r4 = Rectangle((c, yb - ytip), d - c, 2 * ytip, fill=False, zorder=3)
            r5 = Polygon(((a, ya - ytip), (c, yb + ytip),
                          (d, yb + ytip), (b, ya - ytip)),
                          fc='r', alpha=.2)
            rr = (r1, r2, r3, r4, r5)
            if i == 2:
                rr = rr[:-1]
            for r in rr:
                root.add_patch(r)

    # Gap pairs
    hspa, hspb = zip(*myhsps)
    gapa, gapb = [], []
    for (a, b), (c, d) in pairwise(hspa):
        gapa.append((b + 1, c - 1))
    for (a, b), (c, d) in pairwise(hspb):
        gapb.append((b + 1, c - 1))
    gaps = zip(gapa, gapb)
    tpos = titlepos[-1]

    yy = tpos - .05
    for i, ((a, b), (c, d)) in enumerate(gaps):
        i += 1
        a, b, c, d = [m(x) for x in (a, b, c, d)]
        xx = (a + b + c + d) / 4
        TextCircle(root, xx, yy, str(i))

    # Bites
    ystart = .24
    ytip = .05
    bites = (("Bite(40=>-15)", True),
             ("Bite(50=>35)", False),
             ("Bite(70=>120)", False),
             ("Bite(100=>3)", True))
    for i, (bite, selected) in enumerate(bites):
        xx = .15 if (i % 2 == 0) else .55
        yy = ystart - i / 2 * ytip
        i += 1
        TextCircle(root, xx, yy, str(i))
        color = "k" if selected else "gray"
        root.text(xx + ytip, yy, bite, size=10, color=color, va="center")

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    figname = fname() + ".pdf"
    savefig(figname, dpi=300)
示例#14
0
文件: kmer.py 项目: bennyyu/jcvi
def histogram(args):
    """
    %prog histogram meryl.histogram species K

    Plot the histogram based on meryl K-mer distribution, species and N are
    only used to annotate the graphic. Find out totalKmers when running
    kmer.meryl().
    """
    p = OptionParser(histogram.__doc__)
    p.add_option("--pdf", default=False, action="store_true",
            help="Print PDF instead of ASCII plot [default: %default]")
    opts, args = p.parse_args(args)

    if len(args) != 3:
        sys.exit(not p.print_help())

    histfile, species, N = args
    ascii = not opts.pdf
    fp = open(histfile)
    hist = {}
    totalKmers = 0

    # Guess the format of the Kmer histogram
    soap = False
    for row in fp:
        if len(row.split()) == 1:
            soap = True
            break
    fp.seek(0)

    for rowno, row in enumerate(fp):
        if soap:
            K = rowno + 1
            counts = int(row.strip())
        else:  # meryl histogram
            K, counts = row.split()[:2]
            K, counts = int(K), int(counts)

        Kcounts = K * counts
        totalKmers += Kcounts
        hist[K] = counts

    history = ["drop"]
    for a, b in pairwise(sorted(hist.items())):
        Ka, ca = a
        Kb, cb = b
        if ca <= cb:
            status = "rise"
        else:
            status = "drop"
        if history[-1] != status:
            history.append(status)
        if history == ["drop", "rise", "drop"]:
            break

    Total_Kmers = int(totalKmers)
    Kmer_coverage = Ka
    Genome_size = Total_Kmers * 1. / Ka / 1e6

    Total_Kmers_msg = "Total {0}-mers: {1}".format(N, Total_Kmers)
    Kmer_coverage_msg = "{0}-mer coverage: {1}".format(N, Kmer_coverage)
    Genome_size_msg = "Estimated genome size: {0:.1f}Mb".format(Genome_size)

    for msg in (Total_Kmers_msg, Kmer_coverage_msg, Genome_size_msg):
        print >> sys.stderr, msg

    counts = sorted((a, b) for a, b in hist.items() if a <= 100)
    x, y = zip(*counts)
    title = "{0} genome {1}-mer histogram".format(species, N)

    if ascii:
        return asciiplot(x, y, title=title)

    fig = plt.figure(1, (6, 6))
    plt.plot(x, y, 'g-', lw=2, alpha=.5)

    ax = plt.gca()
    ax.text(.5, .9, _(Total_Kmers_msg),
            ha="center", color='b', transform=ax.transAxes)
    ax.text(.5, .8, _(Kmer_coverage_msg),
            ha="center", color='b', transform=ax.transAxes)
    ax.text(.5, .7, _(Genome_size_msg),
            ha="center", color='b', transform=ax.transAxes)

    ax.set_title(_(title), color='r')
    xlabel, ylabel = "Coverage (X)", "Counts"
    ax.set_xlabel(_(xlabel), color='r')
    ax.set_ylabel(_(ylabel), color='r')
    set_human_axis(ax)

    imagename = histfile.split(".")[0] + ".pdf"
    plt.savefig(imagename, dpi=100)
    print >> sys.stderr, "Image saved to `{0}`.".format(imagename)
示例#15
0
文件: bites.py 项目: zjwang6/jcvi
def bites(args):
    """
    %prog bites

    Illustrate the pipeline for automated bite discovery.
    """

    p = OptionParser(__doc__)
    opts, args = p.parse_args()

    fig = plt.figure(1, (6, 6))
    root = fig.add_axes([0, 0, 1, 1])

    # HSP pairs
    hsps = (
        ((50, 150), (60, 180)),
        ((190, 250), (160, 235)),
        ((300, 360), (270, 330)),
        ((430, 470), (450, 490)),
        ((570, 620), (493, 543)),
        ((540, 555), (370, 385)),  # non-collinear hsps
    )

    titlepos = (0.9, 0.65, 0.4)
    titles = ("Compare orthologous region", "Find collinear HSPs",
              "Scan paired gaps")
    ytip = 0.01
    mrange = 650.0
    m = lambda x: x / mrange * 0.7 + 0.1
    for i, (ya, title) in enumerate(zip(titlepos, titles)):
        yb = ya - 0.1
        plt.plot((0.1, 0.8), (ya, ya), "-", color="gray", lw=2, zorder=1)
        plt.plot((0.1, 0.8), (yb, yb), "-", color="gray", lw=2, zorder=1)
        RoundLabel(root, 0.5, ya + 4 * ytip, title)
        root.text(0.9, ya, "A. thaliana", ha="center", va="center")
        root.text(0.9, yb, "B. rapa", ha="center", va="center")
        myhsps = hsps
        if i >= 1:
            myhsps = hsps[:-1]
        for (a, b), (c, d) in myhsps:
            a, b, c, d = [m(x) for x in (a, b, c, d)]
            r1 = Rectangle((a, ya - ytip),
                           b - a,
                           2 * ytip,
                           fc="r",
                           lw=0,
                           zorder=2)
            r2 = Rectangle((c, yb - ytip),
                           d - c,
                           2 * ytip,
                           fc="r",
                           lw=0,
                           zorder=2)
            r3 = Rectangle((a, ya - ytip),
                           b - a,
                           2 * ytip,
                           fill=False,
                           zorder=3)
            r4 = Rectangle((c, yb - ytip),
                           d - c,
                           2 * ytip,
                           fill=False,
                           zorder=3)
            r5 = Polygon(
                ((a, ya - ytip), (c, yb + ytip), (d, yb + ytip),
                 (b, ya - ytip)),
                fc="r",
                alpha=0.2,
            )
            rr = (r1, r2, r3, r4, r5)
            if i == 2:
                rr = rr[:-1]
            for r in rr:
                root.add_patch(r)

    # Gap pairs
    hspa, hspb = zip(*myhsps)
    gapa, gapb = [], []
    for (a, b), (c, d) in pairwise(hspa):
        gapa.append((b + 1, c - 1))
    for (a, b), (c, d) in pairwise(hspb):
        gapb.append((b + 1, c - 1))
    gaps = zip(gapa, gapb)
    tpos = titlepos[-1]

    yy = tpos - 0.05
    for i, ((a, b), (c, d)) in enumerate(gaps):
        i += 1
        a, b, c, d = [m(x) for x in (a, b, c, d)]
        xx = (a + b + c + d) / 4
        TextCircle(root, xx, yy, str(i))

    # Bites
    ystart = 0.24
    ytip = 0.05
    bites = (
        ("Bite(40=>-15)", True),
        ("Bite(50=>35)", False),
        ("Bite(70=>120)", False),
        ("Bite(100=>3)", True),
    )
    for i, (bite, selected) in enumerate(bites):
        xx = 0.15 if (i % 2 == 0) else 0.55
        yy = ystart - i / 2 * ytip
        i += 1
        TextCircle(root, xx, yy, str(i))
        color = "k" if selected else "gray"
        root.text(xx + ytip, yy, bite, size=10, color=color, va="center")

    root.set_xlim(0, 1)
    root.set_ylim(0, 1)
    root.set_axis_off()

    figname = fname() + ".pdf"
    savefig(figname, dpi=300)
示例#16
0
文件: kmer.py 项目: linlifeng/jcvi
def histogram(args):
    """
    %prog histogram meryl.histogram species K

    Plot the histogram based on meryl K-mer distribution, species and N are
    only used to annotate the graphic. Find out totalKmers when running
    kmer.meryl().
    """
    p = OptionParser(histogram.__doc__)
    p.add_option("--pdf",
                 default=False,
                 action="store_true",
                 help="Print PDF instead of ASCII plot [default: %default]")
    opts, args = p.parse_args(args)

    if len(args) != 3:
        sys.exit(not p.print_help())

    histfile, species, N = args
    ascii = not opts.pdf
    fp = open(histfile)
    hist = {}
    totalKmers = 0

    # Guess the format of the Kmer histogram
    soap = False
    for row in fp:
        if len(row.split()) == 1:
            soap = True
            break
    fp.seek(0)

    for rowno, row in enumerate(fp):
        if soap:
            K = rowno + 1
            counts = int(row.strip())
        else:  # meryl histogram
            K, counts = row.split()[:2]
            K, counts = int(K), int(counts)

        Kcounts = K * counts
        totalKmers += Kcounts
        hist[K] = counts

    history = ["drop"]
    for a, b in pairwise(sorted(hist.items())):
        Ka, ca = a
        Kb, cb = b
        if ca <= cb:
            status = "rise"
        else:
            status = "drop"
        if history[-1] != status:
            history.append(status)
        if history == ["drop", "rise", "drop"]:
            break

    Total_Kmers = int(totalKmers)
    Kmer_coverage = Ka
    Genome_size = Total_Kmers * 1. / Ka / 1e6

    Total_Kmers_msg = "Total {0}-mers: {1}".format(N, Total_Kmers)
    Kmer_coverage_msg = "{0}-mer coverage: {1}".format(N, Kmer_coverage)
    Genome_size_msg = "Estimated genome size: {0:.1f}Mb".format(Genome_size)

    for msg in (Total_Kmers_msg, Kmer_coverage_msg, Genome_size_msg):
        print >> sys.stderr, msg

    counts = sorted((a, b) for a, b in hist.items() if a <= 100)
    x, y = zip(*counts)
    title = "{0} genome {1}-mer histogram".format(species, N)

    if ascii:
        return asciiplot(x, y, title=title)

    fig = plt.figure(1, (6, 6))
    plt.plot(x, y, 'g-', lw=2, alpha=.5)

    ax = plt.gca()
    ax.text(.5,
            .9,
            _(Total_Kmers_msg),
            ha="center",
            color='b',
            transform=ax.transAxes)
    ax.text(.5,
            .8,
            _(Kmer_coverage_msg),
            ha="center",
            color='b',
            transform=ax.transAxes)
    ax.text(.5,
            .7,
            _(Genome_size_msg),
            ha="center",
            color='b',
            transform=ax.transAxes)

    ax.set_title(_(title), color='r')
    xlabel, ylabel = "Coverage (X)", "Counts"
    ax.set_xlabel(_(xlabel), color='r')
    ax.set_ylabel(_(ylabel), color='r')
    set_human_axis(ax)

    imagename = histfile.split(".")[0] + ".pdf"
    plt.savefig(imagename, dpi=100)
    print >> sys.stderr, "Image saved to `{0}`.".format(imagename)