def pick_class_params(): """ """ cluster_options = FormJets.multiapply_input cluster_name = InputTools.list_complete("Which form of clustering? ", cluster_options.keys()).strip() cluster_function = cluster_options[cluster_name] if cluster_name not in FormJets.cluster_classes: if cluster_name in ["Fast", "Home"]: cluster_class = getattr(FormJets, "GeneralisedKT") else: raise NotImplementedError else: cluster_class = getattr(FormJets, cluster_name) default_parameters = cluster_class.default_params chosen_parameters = {} print(f"Select the parameters for {cluster_name}, blank for default.") for name, default in default_parameters.items(): selection = InputTools.list_complete(f"{name} (default {default_parameters[name]}); ", ['']) if selection == '': chosen_parameters[name] = default continue try: selection = ast.literal_eval(selection) except ValueError: pass if not InputTools.yesNo_question(f"Understood {selection}, is this correct? "): print("fix it manually") raise Exception #st() pass chosen_parameters[name] = selection return cluster_name, cluster_function, chosen_parameters
def basic_run(): #data_dir = "/home/henry/Programs/pythia8304/reshowered_restricted/" data_dir = "/home/henry/Programs/pythia8304/reshowered_restricted_smalldr/" suffix = ".lhe" data_types = [ name.replace(suffix, "") for name in os.listdir(data_dir) if name.endswith(suffix) ] print(data_types) data_type = InputTools.list_complete("Which data type? ", data_types).strip() if "hz_to_bbee" in data_type: #events = [6589, 675, 5028] events = [4657, 9785, 4081] elif "gz_to_bbee" in data_type: #events = [5334, 4210, 1394] events = [40036, 2422, 35096] else: events = [0, 1, 2, 3] fig, ax_arr = plt.subplots(2, 2, figsize=(10, 10)) ax_list = ax_arr.flatten() calculate_plot(data_dir, data_type, events, ax_list) matplotlib.rc('text', usetex=False) fig.suptitle(f"{data_type} reshowered a thousand times") fig.set_tight_layout(True)
def plot_one(eventWise, jet_name=None): if isinstance(eventWise, str): eventWise = Components.EventWise.from_file(eventWise) if jet_name is None: jet_names = FormJets.get_jet_names(eventWise) jet_name = InputTools.list_complete("Chose a jet; ", jet_names).strip() jet_idxs = FormJets.filter_jets(eventWise, jet_name) [ tag_mass2_in, all_mass2_in, bg_mass2_in, rapidity_in, phi_in, pt_in, mask, tag_rapidity_in, tag_phi_in, tag_pt_in, percent_found, seperate_jets ] = CompareClusters.per_event_detectables(eventWise, jet_name, jet_idxs) plot_rapidity_phi_offset(jet_name, eventWise, rapidity_in, phi_in, tag_rapidity_in, tag_phi_in) plt.show() input() plot_PT(jet_name, eventWise, pt_in, tag_pt_in) plt.show() input() plot_Width(jet_name, eventWise) plt.show() input() plot_Multiplicity(jet_name, eventWise) plt.show() input() plot_MassPeaks(jet_name, eventWise) plt.show() input()
def make_new_cluster(eventWise): """ Parameters ---------- eventWise : Returns ------- """ cluster_name, cluster_function, chosen_parameters = pick_class_params() # now we have parameters, apply them jet_name = InputTools.list_complete("Name this cluster (empty for autoname); ", ['']) if jet_name == '': found = [name.split('_', 1)[0] for name in eventWise.hyperparameters if name.startswith(cluster_name)] i = 0 jet_name = cluster_name + "Jet" + str(i) while jet_name in found: i += 1 jet_name = cluster_name + "Jet" + str(i) print(f"Naming this {jet_name}") FormJets.cluster_multiapply(eventWise, cluster_function, chosen_parameters, batch_length=BATCH_LENGTH, jet_name=jet_name) return jet_name
def main(): """ """ from jet_tools import Components, InputTools, FormJets eventWise_path = InputTools.get_file_name("Name the eventWise: ", '.awkd').strip() if eventWise_path: eventWise = Components.EventWise.from_file(eventWise_path) jets = FormJets.get_jet_names(eventWise) repeat = True barrel_radius2 = np.max((eventWise.Track_OuterX**2 + eventWise.Track_OuterY**2))) barrel_radius = np.sqrt(barrel_radius2) half_barrel_length = np.max(np.abs(eventWise.Track_OuterZ.flatten())) while repeat: eventWise.selected_event = int(input("Event number: ")) jet_name = InputTools.list_complete("Jet name (empty for none): ", jets).strip() if not jet_name: outer_pos, tower_pos, barrel_radius, halfbarrel_length\ = plot_tracks_towers(eventWise, barrel_radius=barrel_radius, half_barrel_length=half_barrel_length) else: jets_here = getattr(eventWise, jet_name + "_Label") print(f"Number of jets = {len(jets_here)}") source_idx = eventWise.JetInputs_SourceIdx n_source = len(source_idx) jets_here = [source_idx[jet[jet < n_source]] for jet in jets_here] all_jet_particles = set(np.concatenate(jets_here)) assert all_jet_particles == set(source_idx) results = plot_tracks_towers(eventWise, particle_jets=jets_here, barrel_radius=barrel_radius, half_barrel_length=half_barrel_length) outer_pos, tower_pos, barrel_radius, halfbarrel_length = results plot_beamline(halfbarrel_length*3) print(f"Barrel_radius = {barrel_radius}, half barrel length = {halfbarrel_length}") mlab.show() repeat = InputTools.yesNo_question("Repeat? ")
def test_list_complete(): select_from = ['aaa', 'abb', 'bbb'] # chcek get list complete allows arbitary input arbitary = "jflsafhdkas ;lasjdf" with replace_stdin(io.StringIO(arbitary)): found = InputTools.list_complete("Msg ", select_from) assert found.strip() == arbitary # tab completing complete = 'b\t' with replace_stdin(io.StringIO(complete)): with unittest.mock.patch('jet_tools.InputTools.tab_complete', new=fake_tab_complete): found = InputTools.list_complete("Msg ", select_from) expected = select_from[-1] assert found.strip( ) == expected, f"Found {found} from {complete}, expected {expected}"
def define_inputs(eventWise): """ Parameters ---------- eventWise : Returns ------- """ if 'JetInputs_Energy' in eventWise.columns: use_existing = InputTools.yesNo_question("There are already JetInputs, use these? ") if use_existing: return eventWise else: # make a copy of the eventWise with no clusters or JetInputs path = eventWise.path_name print("Will make a copy of the eventWise without existing clusters to change JetInputs") print(f"Current file name is {eventWise.file_name}.") new_name = InputTools.list_complete("Name the copy; ", ['']) if not new_name.endswith('.awkd'): new_name += '.awkd' new_path = os.path.join(eventWise.dir_name, new_name) shutil.copy(path, new_path) del eventWise eventWise = Components.EventWise.from_file(new_path) # remove any clusters clusters = {name.split('_', 1)[0] for name in eventWise.columns if name.endswith('Parent')} for name in clusters: eventWise.remove_prefix(name) # remove the jet inputs eventWise.remove_prefix('JetInputs') # if we get here there are no current JetInputs if InputTools.yesNo_question("Filter the tracks on pT or eta? "): pt_cut = InputTools.get_literal("What is the minimum pT of the tracks? ", float) eta_cut = InputTools.get_literal("What is the absolute maximum of the tracks? ", float) pt_eta_cut = lambda *args: FormJetInputs.filter_pt_eta(*args, min_pt=pt_cut, max_eta=eta_cut) filter_functions = [FormJetInputs.filter_ends, pt_eta_cut] else: filter_functions = [FormJetInputs.filter_ends] FormJetInputs.create_jetInputs(eventWise, filter_functions=filter_functions, batch_length=BATCH_LENGTH) return eventWise
def test_PreSelections(): # manually clear the last sugestions InputTools.last_selections = InputTools.PreSelections() messages1 = ["Blarfle", "good dog", "bork bork", "clip clop"] constant_lenghts = [-1, 5, 9, -1] functions = [ InputTools.get_file_name, lambda msg, clen: InputTools.list_complete(msg, [], clen), lambda msg, clen: InputTools.select_values(msg, ['bog', 'fog'], [2, 3], consistant_length=clen), lambda msg, clen: InputTools.select_value( msg, 1, consistant_length=clen) ] inputs = ["fog.meow", "boop", '3, 4', '5'] expected = ["fog.meow", "boop", [3., 4.], 5.] for i, func in enumerate(functions): with replace_stdin(io.StringIO(inputs[i])): func(messages1[i], constant_lenghts[i]) # this should have filled the last_selections for i, message in enumerate(messages1): # there may be stuff printed besides the message assert message in InputTools.last_selections.questions[i] assert constant_lenghts[ i] == InputTools.last_selections.consistant_length[i] try: assert expected[i] == InputTools.last_selections.answers[i] except ValueError: tst.assert_allclose(expected[i], InputTools.last_selections.answers[i]) # write and read with TempTestDir("tst") as dir_name: file_name = os.path.join(dir_name, "last_sel.dat") InputTools.last_selections.write(file_name) InputTools.pre_selections = InputTools.PreSelections(file_name) messages2 = ["Blarfle", "good cat", "bork bork!"] for i, msg in enumerate(messages2): found = functions[i](msg, constant_lenghts[i]) try: assert expected[i] == found except ValueError: tst.assert_allclose(expected[i], found)
def get_existing_clusters(eventWise): """ Parameters ---------- eventWise : Returns ------- """ clusters = {name.split('_', 1)[0] for name in eventWise.columns if name.endswith('Parent')} if not clusters: return False choice = InputTools.list_complete("Do you want to use an existing cluster (blank for make new)? ", list(clusters)).strip() if choice == '': return False return choice
def plot_phys_event(eventWise, event_num, metric_names=None, jet_names=None): """ Parameters ---------- eventWise : event_num : *jet_names : Returns ------- """ if jet_names is None: jet_names = [ name.split('_')[0] for name in eventWise.columns if name.endswith("_PhysDistance") ] jet_names = jet_names[::2] if metric_names is None: metric_names = [] name = True while name: name = InputTools.list_complete("Chose a metric (empty to stop); ", metrics.keys()) name = name.strip() metric_names.append(name) del metric_names[-1] num_jets = len(jet_names) # get global data eventWise.selected_event = event_num phis = eventWise.JetInputs_Phi y_lims = np.min(phis), np.max(phis) rapidities = eventWise.JetInputs_Rapidity x_lims = np.min(rapidities), np.max(rapidities) same_mask = np.array(eventWise.JetInputs_PairLabels.tolist()) cross_mask = np.array(eventWise.JetInputs_PairCrossings.tolist()) colours = np.zeros((len(same_mask), len(same_mask[0]), 4), dtype=float) colours += 0.3 colours[same_mask] = [0.1, 1., 0.1, 0.] colours[cross_mask] = [1., 0.1, 0., 0.] colours[:, :, -1] = same_mask.astype(float) * 0.5 + cross_mask.astype( float) * 0.5 + 0.2 # make a grid of axis for each jet name and each metric num_metrics = len(metric_names) fig, ax_arr = plt.subplots(num_jets, num_metrics, sharex=True, sharey=True) ax_arr = ax_arr.reshape((num_jets, num_metrics)) # now the other axis should contain the plots metric_order = list(metrics.keys()) for jet_n, jet_name in enumerate(jet_names): distances = getattr(eventWise, jet_name + "_PhysDistance") # normalise the distances distances = distances / np.nanmean(distances.tolist(), axis=(1, 2)) ratios = getattr(eventWise, jet_name + "_DifferencePhysDistance") for metric_n, metric in enumerate(metric_names): metric_pos = metric_order.index(metric) ax = ax_arr[jet_n, metric_n] for i1, (p1, r1) in enumerate(zip(phis, rapidities)): for i2, (p2, r2) in enumerate(zip(phis, rapidities)): width = distances[metric_pos, i1, i2] line = matplotlib.lines.Line2D([r1, r2], [p1, p2], c=colours[i1, i1], lw=width) ax.add_line(line) if jet_n == num_jets - 1: ax.set_xlabel(metric) if metric_n == 0: ax.set_ylabel(jet_name) ax.set_xlim(*x_lims) ax.set_ylim(*y_lims) fig.set_size_inches(num_metrics * 3.5, num_jets * 1.8) #fig.tight_layout() fig.subplots_adjust(hspace=0.0, wspace=0., right=1., top=1.)
import numpy as np from matplotlib import pyplot as plt from jet_tools import CompareDatasets, InputTools irc_information = awkward1.load("../megaIgnore/IRC_shapes.awkd") jet_names = irc_information["jet_names"] jet_classes = [names[0].split("Jet", 1)[0] for names in jet_names] orders = irc_information["orders"] kinematic_names = irc_information["kinematic_names"] shape_names = irc_information["shape_names"] # chose the variable chosen_var = InputTools.list_complete("Which variable? ", kinematic_names + shape_names) chosen_var = chosen_var.strip() is_kinematic = chosen_var in kinematic_names js_scores = [] if is_kinematic: data = irc_information["kinematics"] var_index = kinematic_names.index(chosen_var) subsampled_js_scores = [] else: data = irc_information["shapes"] var_index = shape_names.index(chosen_var) # run a loop computing the scores for c, class_name in enumerate(jet_classes):
def show_2d(eventWise, jet_name_base, show_params=None, take_best_slice=True, ax_arr=None): if isinstance(eventWise, str): eventWise = Components.EventWise.from_file("../megaIgnore/iridis_ScanAffinity_SpectralFull.awkd") jet_names = [name for name in FormJets.get_jet_names(eventWise) if name.startswith(jet_name_base)] score_sg = np.array([getattr(eventWise, jet_name + "_SeperateAveDistanceSignal") for jet_name in jet_names]) score_bg = np.array([getattr(eventWise, jet_name + "_SeperateAveDistanceBG") for jet_name in jet_names]) possible_parameters = {getattr(FormJets, cluster_class).default_params.keys() for cluster_class in FormJets.cluster_classes} varying_names = [] varying_params = [] mappings = [] fixed_params = {} for name in possible_parameters: values = [getattr(eventWise, f"{jet_name}_{name}") for jet_name in jet_names] set_values = set(values) if len(set_values) == 1: fixed_params[name] = values[0] else: varying_names.append(name) varying_params.append(values) mappings.append({val: i for i, val in enumerate(sorted(set_values))}) varying_params = np.array(varying_params) num_configurations = varying_params.shape[1] num_params = varying_params.shape[0] image_dimensions = tuple(len(m) for m in mappings) image_sg = np.empty(image_dimensions) image_bg = np.empty(image_dimensions) for i in range(num_configurations): coordinates = tuple(mapping[values[i]] for mapping, values in zip(mappings, varying_params)) image_bg[coordinates] = score_bg[i] image_sg[coordinates] = score_sg[i] combined = np.sqrt(image_bg**2 + image_sg**2) # now turn this 2d if show_params is None: if len(varying_params) == 2: show_params = varying_params else: first = InputTools.list_complete("Chose first parameter; ", varying_params) second = InputTools.list_complete("Chose second parameter; ", varying_params) show_params = [first.strip(), second.strip()] show_params = [varying_names.index(s) for s in show_params] assert len(show_params) == 2 if len(show_params) == len(varying_params): pass elif take_best_slice: indices = [slice(None) for _ in varying_params] for i in range(num_params): if i not in show_params: other_axis = tuple(j for j in range(num_params) if i!=j) best = np.argmin(np.sum(combined, axis=other_axis)) indices[i] = best image_sg = image_sg[indices] image_bg = image_bg[indices] combined = combined[indices] else: other_axis = tuple(i for i in range(num_params) if i not in show_params) image_sg = np.mean(image_sg, axis=other_axis) image_bg = np.mean(image_bg, axis=other_axis) combined = np.mean(combined, axis=other_axis) if ax_arr is None: fig, ax_arr = plt.subplots(1, 3) ax1, ax2, ax3 = ax_arr ax1.imshow(image_sg[indices].T, origin='lower') ax3.imshow(image_bg[indices].T, origin='lower') img = ax2.imshow(combined[indices].T, origin='lower') plt.colorbar(img, ax=ax2) x_mapping = mappings[show_params[0]] y_mapping = mappings[show_params[1]] for ax in ax_arr: ax.set_xticks(sorted(x_mapping.values())) ax.set_xticklabels(sorted(x_mapping.keys())) ax.set_yticks(sorted(y_mapping.values())) ax.set_yticklabels(sorted(y_mapping.keys())) ax.set_xlabel(varying_params[show_params[0]]) ax.set_ylabel(varying_params[show_params[1]]) ax1.set_title("Signal lost") ax3.set_title("Background contamination") ax2.set_title("Euclidien combination")