示例#1
0
    def _create_label(self, anchor, bbox):
        # label: 1 is positive, 0 is negative, -1 is dont care
        label = -jt.ones((anchor.shape[0], ), dtype="int32")

        argmax_ious, max_ious, gt_argmax_ious = self._calc_ious(anchor, bbox)

        # assign negative labels first so that positive labels can clobber them
        label[max_ious < self.neg_iou_thresh] = 0

        # positive label: for each gt, anchor with highest iou
        label[gt_argmax_ious] = 1

        # positive label: above threshold IOU
        label[max_ious >= self.pos_iou_thresh] = 1

        # subsample positive labels if we have too many
        n_pos = int(self.pos_ratio * self.n_sample)
        pos_index = jt.where(label == 1)[0]
        if len(pos_index) > n_pos:
            tmp_index = np.arange(0, pos_index.shape[0])
            np.random.shuffle(tmp_index)
            disable_index = tmp_index[:pos_index.shape[0] - n_pos]
            disable_index = pos_index[disable_index]
            label[disable_index] = -1

        # subsample negative labels if we have too many
        n_neg = self.n_sample - jt.sum(label == 1).item()
        neg_index = jt.where(label == 0)[0]
        if len(neg_index) > n_neg:
            tmp_index = np.arange(0, neg_index.shape[0])
            np.random.shuffle(tmp_index)
            disable_index = tmp_index[:neg_index.shape[0] - n_neg]
            disable_index = neg_index[disable_index]
            label[disable_index] = -1
        return argmax_ious, label
示例#2
0
 def execute(self, trans_points, cp, voxel, gridSize, weight=1):
     if len(trans_points.shape) == 4:
         trans_points = trans_points.squeeze(dim=-1)
     nb = pointClosestCellIndex(trans_points)
     idx = jt.matmul(
         nb, jt.transform.to_tensor(jt.array([(gridSize**2), gridSize, 1])))
     mask = (1 - voxel.view((-1), (gridSize**3)).gather(1, idx))
     idx = idx.unsqueeze(2)
     idx = idx.repeat(1, 1, 3)
     mask = mask.unsqueeze(2).repeat(1, 1, 3)
     closest_points = cp.gather(1, idx)
     self.constant = weight
     distance = (trans_points - closest_points)
     distance = (distance * mask)
     # self.save_for_backward(distance)
     self.saved_tensors = distance
     return (jt.mean(jt.sum(jt.sum(jt.pow(distance, 2), 2), 1)) * weight)
示例#3
0
def log_sum_exp(x):
    """Utility function for computing log_sum_exp while determining
    This will be used to determine unaveraged confidence loss across
    all examples in a batch.
    Args:
        x (Variable(tensor)): conf_preds from conf layers
    """
    x_max = x.data.max()
    return jt.log(jt.sum(jt.exp(x - x_max), 1)) + x_max
def planesymTransform(sample, plane):
    abc = plane[:, 0:3].unsqueeze(1).repeat(1, sample.shape[1], 1)
    d = plane[:, 3].unsqueeze(1).unsqueeze(1).repeat(1, sample.shape[1], 1)
    fenzi = (jt.sum((sample * abc), 2, True) + d)
    fenmu = (jt.norm(plane[:, 0:3], 2, 1, True).unsqueeze(1).repeat(
        1, sample.shape[1], 1) + 1e-05)
    x = (2 * jt.divide(fenzi, fenmu))
    y = jt.multiply(x.repeat(1, 1, 3), (abc / fenmu))
    return (sample - y)
 def execute(self):
     self.renderer.transform.set_eyes_from_angles(2.732, 30, 140)
     image = self.renderer(self.vertices,
                           self.faces,
                           self.textures,
                           metallic_textures=self.metallic_textures,
                           roughness_textures=self.roughness_textures)
     loss = jt.sum((image - self.image_ref).sqr())
     return loss
示例#6
0
    def execute(self, xyz1, xyz2, points1, points2):
        """
        Input:
            xyz1: input points position data, [B, C, N]
            xyz2: sampled input points position data, [B, C, S]
            points1: input points data, [B, D, N]
            points2: input points data, [B, D, S]
        Return:
            new_points: upsampled points data, [B, D', N]
        """
        # xyz1 = xyz1.permute(0, 2, 1)
        # xyz2 = xyz2.permute(0, 2, 1)

        # points2 = points2.permute(0, 2, 1)
        B, N, C = xyz1.shape
        _, S, _ = xyz2.shape

        if S == 1:
            interpolated_points = points2.repeat(1, N, 1)
        else:
            dists = square_distance(xyz1, xyz2)
            idx, dists = jt.argsort(dists, dim=-1)
            dists, idx = dists[:, :, :3], idx[:, :, :3]  # [B, N, 3]

            dist_recip = 1.0 / (dists + 1e-8)
            norm = jt.sum(dist_recip, dim=2, keepdims=True)
            weight = dist_recip / norm
            interpolated_points = jt.sum(index_points(points2, idx) *
                                         weight.view(B, N, 3, 1),
                                         dim=2)

        if points1 is not None:
            # points1 = points1.permute(0, 2, 1)
            new_points = concat([points1, interpolated_points], dim=-1)
        else:
            new_points = interpolated_points

        new_points = new_points.permute(0, 2, 1)
        # l = len(self.mlp_convs)
        for i, conv in self.mlp_convs.layers.items():
            # conv = self.mlp_convs[i]
            bn = self.mlp_bns[i]
            new_points = self.relu(bn(conv(new_points)))
        return new_points.permute(0, 2, 1)
示例#7
0
def chamfer_loss(pc1, pc2, reduction='mean', dims='BNC', bidirectional=False):
    ''' return the chamfer loss from pc1 to pc2.

    :param pc1:  input point cloud
    :type pc1: jittor array

    :param pc2:  input point cloud
    :type pc2: jittor array

    :param reduction: reduction method in batches, can be 'mean', 'sum', or None. Default: 'mean'.
    :type reduction: str, optional
            
    :param dims: a string that represents each dimension, can be
            '[BNC]' ([batch, number of points, xyz]), or
            '[BCN]' ([batch, xyz, number of points]). Default: 'BNC'.
    :type dims: str, optional

    Example:

    >>> import jittor as jt
    >>> from jittor.loss3d import chamfer_loss
    >>> jt.flags.use_cuda = True
    >>> pc1 = jt.rand([10, 100, 3], dtype=jt.float32)
    >>> pc2 = jt.rand([10, 100, 3], dtype=jt.float32)
    >>> cf = chamfer_loss(pc1, pc2, dims='BNC', bidirectional=True)
    >>> print('chamfer loss =', cf.item())
    '''
    if bidirectional:
        return chamfer_loss(pc1, pc2, reduction, dims) + chamfer_loss(
            pc2, pc1, reduction, dims)

    assert dims in ['BNC', 'BCN']
    if dims == 'BCN':
        pc1, pc2 = pc1.permute(0, 2, 1), pc2.permute(0, 2, 1)

    batch_size_1, N, _ = pc1.shape
    batch_size_2, M, _ = pc2.shape
    assert batch_size_1 == batch_size_2
    batch_size = batch_size_1

    idx = jt.code([batch_size, N],
                  'int32', [pc1, pc2],
                  cpu_src=cpu_src,
                  cuda_src=cuda_src)

    nearest_pts = pc2.reindex([batch_size, idx.shape[1], 3],
                              ['i0', '@e0(i0, i1)', 'i2'],
                              extras=[idx])

    chamfer_distance = (((pc1 - nearest_pts)**2).sum(dim=-1)).sqrt()
    if reduction is None:
        return chamfer_distance
    elif reduction == 'sum':
        return jt.sum(chamfer_distance)
    elif reduction == 'mean':
        return jt.mean(chamfer_distance)
示例#8
0
def integrator(raw, z_vals, rays_d, raw_noise_std=0, white_bkgd=False):
    """Transforms model's predictions to semantically meaningful values.
    Args:
        raw: [num_rays, num_samples along ray, 4]. Prediction from model.
        z_vals: [num_rays, num_samples along ray]. Integration time.
        rays_d: [num_rays, 3]. Direction of each ray.
    Returns:
        rgb_map: [num_rays, 3]. Estimated RGB color of a ray.
        disp_map: [num_rays]. Disparity map. Inverse of depth map.
        acc_map: [num_rays]. Sum of weights along each ray.
        weights: [num_rays, num_samples]. Weights assigned to each sampled color.
        depth_map: [num_rays]. Estimated distance to object.
    """
    raw2alpha = lambda raw, dists, act_fn=jt.nn.relu: 1. - jt.exp(-act_fn(raw)
                                                                  * dists)

    dists = z_vals[..., 1:] - z_vals[..., :-1]
    dists = jt.concat([
        dists,
        jt.array(np.array([1e10]).astype(np.float32)).expand(
            dists[..., :1].shape)
    ], -1)  # [N_rays, N_samples]
    dists = dists * jt.norm(rays_d.unsqueeze(-2), p=2, dim=-1)

    rgb = jt.sigmoid(raw[..., :3])  # [N_rays, N_samples, 3]
    noise = 0.
    if raw_noise_std > 0.:
        noise = jt.init.gauss(raw[..., 3].shape, raw.dtype) * raw_noise_std
    alpha = raw2alpha(raw[..., 3] + noise, dists)  # [N_rays, N_samples]
    weights = alpha * jt.cumprod(
        jt.concat([jt.ones(
            (alpha.shape[0], 1)), 1. - alpha + 1e-10], -1), -1)[:, :-1]
    rgb_map = jt.sum(weights.unsqueeze(-1) * rgb, -2)  # [N_rays, 3]

    depth_map = jt.sum(weights * z_vals, -1)
    disp_map = 1. / jt.maximum(1e-10 * jt.ones_like(depth_map),
                               depth_map / jt.sum(weights, -1))
    acc_map = jt.sum(weights, -1)

    if white_bkgd:
        rgb_map = rgb_map + (1. - acc_map.unsqueeze(-1))

    return rgb_map, disp_map, acc_map, weights, depth_map
示例#9
0
def get_rays(H, W, focal, c2w, intrinsic=None):
    i, j = jt.meshgrid(jt.linspace(0, W - 1, W), jt.linspace(0, H - 1, H))
    i = i.t()
    j = j.t()
    if intrinsic is None:
        dirs = jt.stack([(i - W * .5) / focal, (j - H * .5) / focal,
                         jt.ones_like(i)], -1).unsqueeze(-2)
    else:
        i += 0.5
        j += 0.5
        dirs = jt.stack([i, j, jt.ones_like(i)], -1).unsqueeze(-2)
        dirs = jt.sum(dirs * intrinsic[:3, :3], -1).unsqueeze(-2)
    # Rotate ray directions from camera frame to the world frame
    rays_d = jt.sum(
        dirs * c2w[:3, :3],
        -1)  # dot product, equals to: [c2w.dot(dir) for dir in dirs]
    # Translate camera frame's origin to the world frame. It is the origin of all rays.
    rays_o = c2w[:3, -1].expand(rays_d.shape)
    return rays_o, rays_d
示例#10
0
def GGX(N, H, roughness):
    a = roughness * roughness
    a2 = a * a
    NdotH = nn.relu(jt.sum(N * H, dim=2))
    NdotH2 = (NdotH * NdotH).unsqueeze(2)

    num = a2
    denom = (NdotH2 * (a2 - 1.0) + 1.0)
    denom = 3.1415 * denom * denom

    return num / denom
示例#11
0
def square_distance(src, dst):
    """
    Calculate Euclid distance between each two points.
    src^T * dst = xn * xm + yn * ym + zn * zm;
    sum(src^2, dim=-1) = xn*xn + yn*yn + zn*zn;
    sum(dst^2, dim=-1) = xm*xm + ym*ym + zm*zm;
    dist = (xn - xm)^2 + (yn - ym)^2 + (zn - zm)^2
         = sum(src**2,dim=-1)+sum(dst**2,dim=-1)-2*src^T*dst
    Input:
        src: source points, [B, N, C]
        dst: target points, [B, M, C]
    Output:
        dist: per-point square distance, [B, N, M]
    """
    B, N, _ = src.shape
    _, M, _ = dst.shape
    dist = -2 * jt.matmul(src, dst.permute(0, 2, 1))
    dist += jt.sum(src**2, -1).view(B, N, 1)
    dist += jt.sum(dst**2, -1).view(B, 1, M)
    return dist
示例#12
0
def calc_gradient_penalty(netD, real_data, generated_data):
    LAMBDA = 10
    b_size = real_data.shape[0]
    alpha = jt.random([b_size, 1, 1, 1])
    alpha = alpha.broadcast(real_data)
    interpolated = ((alpha * real_data.data) +
                    ((1 - alpha) * generated_data.data))
    prob_interpolated = netD(interpolated)
    gradients = jt.grad(prob_interpolated, interpolated)
    gradients = jt.reshape(gradients, [b_size, -1])
    gradients_norm = jt.sqrt((jt.sum((gradients**2), dim=1) + 1e-12))
    return (LAMBDA * ((gradients_norm - 1)**2).mean())
示例#13
0
def square_distance(tensor1, tensor2):
    """
    Calculate Euclid distance between each two points.
    tensor1^T * tensor2 = xn * xm + yn * ym + zn * zm;
    sum(tensor1^2, dim=-1) = xn*xn + yn*yn + zn*zn;
    sum(tensor2^2, dim=-1) = xm*xm + ym*ym + zm*zm;
    dist = (xn - xm)^2 + (yn - ym)^2 + (zn - zm)^2
         = sum(tensor1**2,dim=-1)+sum(tensor2**2,dim=-1)-2*tensor1^T*dst
    Input:
        tensor1: source points, [B, N, C]
        tensor2: target points, [B, M, C]
    Output:
        dist: per-point square distance, [B, N, M]
    """
    # print (src.size(), dst.size())
    B, N, _ = tensor1.shape
    _, M, _ = tensor2.shape
    dist = -2 * jt.matmul(tensor1, tensor2.permute(0, 2, 1))
    dist += jt.sum(tensor1**2, -1).view(B, N, 1)
    dist += jt.sum(tensor2**2, -1).view(B, 1, M)
    return dist
示例#14
0
    def execute(self, mesh, eyes=None):
        if self.Gbuffer == "albedo":
            return mesh
        if self.Gbuffer == "normal" or self.Gbuffer == "depth":
            mesh.textures = jt.ones_like(mesh.textures)
        if self.light_mode == 'surface':
            diffuseLight = jt.zeros(mesh.faces.shape)
            specularLight = jt.zeros(mesh.faces.shape)
            diffuseLight = self.ambient(diffuseLight)
            for directional in self.directionals:
                [diffuseLight, specularLight] = directional(
                    diffuseLight, specularLight, mesh.surface_normals,
                    (jt.sum(mesh.face_vertices, dim=2) / 3.0), eyes,
                    mesh.with_specular, mesh.metallic_textures,
                    mesh.roughness_textures)
            if len(mesh.textures.shape) == 4:
                mesh.textures = jt.clamp(
                    mesh.textures * diffuseLight.unsqueeze(2) +
                    jt.ones_like(mesh.textures) * specularLight.unsqueeze(2),
                    0.0, 1.0)
            elif len(mesh.textures.shape) == 6:
                mesh.textures = jt.clamp(
                    mesh.textures *
                    diffuseLight.unsqueeze(2).unsqueeze(2).unsqueeze(2) +
                    jt.ones_like(mesh.textures) *
                    specularLight.unsqueeze(2).unsqueeze(2).unsqueeze(2), 0.0,
                    1.0)

        elif self.light_mode == 'vertex':
            diffuseLight = jt.zeros(mesh.vertices.shape)
            specularLight = jt.zeros(mesh.vertices.shape)
            diffuseLight = self.ambient(diffuseLight)
            for directional in self.directionals:
                [diffuseLight, specularLight
                 ] = directional(diffuseLight, specularLight,
                                 mesh.vertex_normals, mesh.vertices, eyes,
                                 mesh.with_specular, mesh.metallic_textures,
                                 mesh.roughness_textures)
            if len(mesh.textures.shape) == 4:
                mesh.textures = jt.clamp(
                    mesh.textures * diffuseLight.unsqueeze(2) +
                    jt.ones_like(mesh.textures) * specularLight.unsqueeze(2),
                    0.0, 1.0)
            elif len(mesh.textures.shape) == 6:
                mesh.textures = jt.clamp(
                    mesh.textures *
                    diffuseLight.unsqueeze(2).unsqueeze(2).unsqueeze(2) +
                    jt.ones_like(mesh.textures) *
                    specularLight.unsqueeze(2).unsqueeze(2).unsqueeze(2), 0.0,
                    1.0)

        return mesh
示例#15
0
def lighting(faces,
             textures,
             intensity_ambient=0.5,
             intensity_directional=0.5,
             color_ambient=(1, 1, 1),
             color_directional=(1, 1, 1),
             direction=(0, 1, 0)):

    bs, nf = faces.shape[:2]

    # arguments
    # make sure to convert all inputs to float tensors
    color_ambient = jt.array(color_ambient, "float32")
    color_directional = jt.array(color_directional, "float32")
    direction = jt.array(direction, "float32")

    if len(color_ambient.shape) == 1:
        color_ambient = color_ambient.unsqueeze(0)
    if len(color_directional.shape) == 1:
        color_directional = color_directional.unsqueeze(0)
    if len(direction.shape) == 1:
        direction = direction.unsqueeze(0)

    # create light
    light = jt.zeros((bs, nf, 3), "float32")

    # ambient light
    if intensity_ambient != 0:
        light += intensity_ambient * color_ambient.unsqueeze(1)

    # directional light
    if intensity_directional != 0:
        faces = faces.reshape((bs * nf, 3, 3))
        v10 = faces[:, 0] - faces[:, 1]
        v12 = faces[:, 2] - faces[:, 1]

        normals = jt.normalize(jt.cross(v10, v12), eps=1e-5)
        normals = normals.reshape((bs, nf, 3))

        if len(direction.shape) == 2:
            direction = direction.unsqueeze(1)
        cos = nn.relu(jt.sum(normals * direction, dim=2))
        # may have to verify that the next line is correct
        light += intensity_directional * (color_directional.unsqueeze(1) *
                                          cos.unsqueeze(2))
    # apply
    light = light.unsqueeze(-2).unsqueeze(-2).unsqueeze(-2)
    textures *= light
    return textures
示例#16
0
def display_lincomb(proto_data, masks):
    out_masks = jt.matmul(proto_data, masks.t())
    # out_masks = cfg.mask_proto_mask_activation(out_masks)

    for kdx in range(1):
        jdx = kdx + 0
        import matplotlib.pyplot as plt
        coeffs = masks[jdx].numpy()
        idx = np.argsort(-np.abs(coeffs))
        # plt.bar(list(range(idx.shape[0])), coeffs[idx])
        # plt.show()

        coeffs_sort = coeffs[idx]
        arr_h, arr_w = (4, 8)
        proto_h, proto_w, _ = proto_data.shape
        arr_img = np.zeros([proto_h * arr_h, proto_w * arr_w])
        arr_run = np.zeros([proto_h * arr_h, proto_w * arr_w])
        test = jt.sum(proto_data, -1).numpy()

        for y in range(arr_h):
            for x in range(arr_w):
                i = arr_w * y + x

                if i == 0:
                    running_total = proto_data[:, :,
                                               idx[i]].numpy() * coeffs_sort[i]
                else:
                    running_total += proto_data[:, :, idx[i]].numpy(
                    ) * coeffs_sort[i]

                running_total_nonlin = running_total
                if cfg.mask_proto_mask_activation == activation_func.sigmoid:
                    running_total_nonlin = (
                        1 / (1 + np.exp(-running_total_nonlin)))

                arr_img[y * proto_h:(y + 1) * proto_h, x * proto_w:(x + 1) *
                        proto_w] = (proto_data[:, :, idx[i]] / jt.max(
                            proto_data[:, :, idx[i]])).numpy() * coeffs_sort[i]
                arr_run[y * proto_h:(y + 1) * proto_h, x * proto_w:(x + 1) *
                        proto_w] = (running_total_nonlin > 0.5).astype(
                            np.float)
        plt.imshow(arr_img)
        plt.show()
        # plt.imshow(arr_run)
        # plt.show()
        # plt.imshow(test)
        # plt.show()
        plt.imshow(out_masks[:, :, jdx].numpy())
        plt.show()
示例#17
0
 def test_longest_dis_fuse(self):
     x = jt.array(np.random.rand(1, 3, 224, 224).astype(np.float32))
     loss = jt.sum(resnet_fake(x))
     ps = jt.find_vars('resnet_fake')
     gs = jt.grad(loss, ps)
     jt.sync(gs)
     # assert not alloc big tensor
     g = jt.dump_all_graphs()
     for s in g.nodes_info:
         if not s.startswith("Var"):
             continue
         shape = s.split("[")[1].split("]")[0].split(",")
         ptr = s.split("(")[1].split(")")[0].split(",")[-1]
         if ptr != '0':
             assert len(shape) <= 5, s
示例#18
0
    def compute_mask_prob(self, proposal_embed, proposal_margin, pixel_embed):
        m_h, m_w = pixel_embed.shape[-2:]
        obj_num = proposal_embed.shape[0]
        pixel_embed = pixel_embed.transpose(1, 2, 0).unsqueeze(0).expand(
            obj_num, -1, -1, -1)
        proposal_embed = proposal_embed.view(obj_num, 1, 1,
                                             -1).expand(-1, m_h, m_w, -1)
        if self.fix_margin:
            proposal_margin = proposal_margin.new_ones(obj_num, m_h,
                                                       m_w) * self.init_margin
        else:
            proposal_margin = proposal_margin.view(obj_num, 1,
                                                   1).expand(-1, m_h, m_w)
        mask_var = jt.sum((pixel_embed - proposal_embed).sqr(), dim=3)
        mask_prob = jt.exp(-mask_var * proposal_margin)

        return mask_prob
示例#19
0
def get_patches(fake_B, face_mask):
    # [1,1,512,512]->[bs,1,11,11]
    patches = []
    weights = []
    W2 = int(W/2)
    t = np.random.randint(res,size=2)
    for i in range(aa):
        for j in range(aa):
            p = fake_B[:,:,t[0]+i*W:t[0]+(i+1)*W,t[1]+j*W:t[1]+(j+1)*W]
            whitenum = jt.sum(p>=0.0)
            if whitenum < 1 or whitenum > W*W-1:
                continue
            patches.append(p)
            weights.append(face_mask[:,:,t[0]+i*W+W2,t[1]+j*W+W2])
    fake_B_patches = jt.contrib.concat(patches, dim=0)
    conti_weights = jt.contrib.concat(weights, dim=0)+1 #0->1,1->2

    return fake_B_patches, conti_weights
示例#20
0
def farthest_point_sample(xyz, npoint):
    """
    Input:
        xyz: pointcloud data, [B, N, C]
        npoint: number of samples
    Return:
        centroids: sampled pointcloud index, [B, npoint]
    """
    #import ipdb; ipdb.set_trace()
    #device = xyz.device
    B, N, C = xyz.shape
    centroids = jt.zeros((B, npoint))
    distance = jt.ones((B, N)) * 1e10

    farthest = np.random.randint(0, N, B, dtype='l')
    batch_indices = np.arange(B, dtype='l')
    farthest = jt.array(farthest)
    batch_indices = jt.array(batch_indices)
    # jt.sync_all(True)
    # print (xyz.shape, farthest.shape, batch_indices.shape, centroids.shape, distance.shape)
    for i in range(npoint):
        centroids[:, i] = farthest
        centroid = xyz[batch_indices, farthest, :]
        centroid = centroid.view(B, 1, 3)

        dist = jt.sum((xyz - centroid.repeat(1, N, 1))**2, 2)
        mask = dist < distance
        # distance = mask.ternary(distance, dist)
        # print (mask.size())

        if mask.sum().data[0] > 0:
            distance[mask] = dist[mask]  # bug if mask.sum() == 0

        farthest = jt.argmax(distance, 1)[0]
        # print (farthest)
        # print (farthest.shape)
    # B, N, C = xyz.size()
    # sample_list = random.sample(range(0, N), npoint)
    # centroids = jt.zeros((1, npoint))
    # centroids[0,:] = jt.array(sample_list)
    # centroids = centroids.view(1, -1).repeat(B, 1)
    # x_center = x[:,sample_list, :]
    return centroids
示例#21
0
def computeMaskIntersection(gt, gtMask, pred, predMask):
    """
    Compute intersection between GT instance and prediction.
    Increase efficiency by computing elementwise product between masks
    only inside the tight bounding box of the union of the prediction and
    target masks.
    """
    if gtMask is None or predMask is None:
        return 0

    assert gtMask.shape == predMask.shape
    assert len(gtMask.shape) == len(predMask.shape) == 2

    xmin, ymin, xmax, ymax = getUnionBox(gt["box"], pred["box"])
    gtMask_crop = gtMask[ymin:ymax, xmin:xmax]
    predMask_crop = predMask[ymin:ymax, xmin:xmax]

    # elementwise AND
    intersection = jt.sum(gtMask_crop * predMask_crop).numpy().item()
    return intersection
示例#22
0
    def R1Penalty(self, real_img, height, alpha):

        # TODO: use_loss_scaling, for fp16
        # apply_loss_scaling = lambda x: x * torch.exp(x * torch.Tensor([np.float32(np.log(2.0))]).to(real_img.device))
        apply_loss_scaling = lambda x: x * jt.exp(x * jt.array(
            [np.float32(np.log(2.0))]))
        # undo_loss_scaling = lambda x: x * torch.exp(-x * torch.Tensor([np.float32(np.log(2.0))]).to(real_img.device))
        undo_loss_scaling = lambda x: x * jt.exp(-x * jt.array(
            [np.float32(np.log(2.0))]))

        # real_img = torch.autograd.Variable(real_img, requires_grad=True)
        real_img = init.constant(real_img.shape, 'float32', real_img)
        assert not real_img.is_stop_grad()
        real_logit = self.dis(real_img, height, alpha)
        # real_logit = apply_loss_scaling(torch.sum(real_logit))
        # real_grads = torch.autograd.grad(outputs=real_logit, inputs=real_img,
        #                                  grad_outputs=torch.ones(real_logit.size()).to(real_img.device),
        #                                  create_graph=True, retain_graph=True)[0].view(real_img.size(0), -1)
        real_grads = jt.grad(real_logit, real_img).view(real_img.size(0), -1)
        # real_grads = undo_loss_scaling(real_grads)
        # r1_penalty = torch.sum(torch.mul(real_grads, real_grads))
        r1_penalty = jt.sum(jt.multiply(real_grads, real_grads))
        return r1_penalty
示例#23
0
def test(net, test_data, state):
    net.eval()
    loss_avg = 0.0
    correct = 0
    start_time = time.time()
    for batch_idx, (data, target) in enumerate(test_data):
        data, target = jt.array(data), jt.array(target)

        # forward
        output = net(data)
        loss = jt.nn.cross_entropy_loss(output, target)

        # accuracy
        pred = jt.argmax(output, dim=1)[0]
        correct += float(jt.sum(pred == target).data[0])

        # test loss average
        loss_avg += float(loss.data[0])
    end_time = time.time()
    fps = (len(test_data) * test_data.batch_size) / (end_time - start_time)

    state['test_loss'] = loss_avg / len(test_data)
    state['test_accuracy'] = correct / (len(test_data) * test_data.batch_size)
    state['test_fps'] = fps
示例#24
0
 def execute(self, input, target):
     bs_idx = jt.array(range(input.shape[0]))
     ret = (-jt.log(nn.softmax(input, dim=1)))[bs_idx, target]
     if self.reduction != None:
         ret = jt.mean(ret) if self.reduction == 'mean' else jt.sum(ret)
     return ret
    def test_node_performance(self):
        mode = os.environ.get("test_node_performance")
        if mode==None or mode not in "12":
            return
        if mode=="1":
            bc = lambda x: jt.broadcast(x, [1,1,1,1],[0,1,2])
            rd = lambda x: jt.sum(x)
        else:
            bc = lambda x: jt.reindex(x, [1,1,1,1],["i0+i1+i2+i3"])
            rd = lambda x: jt.reindex_reduce(x, "add", [1], ["i0+i1+i2+i3"])
        if jt.compiler.is_debug: return
        def run():
            start_time = time.time()
            fop_num = 10000
            fop_input_num = (2, 3) # (i,j) -> [i,i+j] -> [2, 5]
            # fop_output_num = (1, 0) # [1,1]
            inner_op_num = (0, 3)
            fop_type_num = 63 # how many different fuse op
            input_queue_num = 15
            queue = [1.0]*(input_queue_num+1)
            x = get_xorshf96()
            rand = lambda x, l, r: l+((x())&r)
            ops = ["add", "subtract", "multiply", "divide"]
            get_op = lambda x: ops[(x())&3]
            for i in range(fop_num):
                prev = bc(queue[rand(x,0,input_queue_num)])
                y = get_xorshf96(x()&fop_type_num)
                inum = rand(y, *fop_input_num)
                q = [prev]
                for i in range(inum-1):
                    n = bc(queue[rand(x,0,input_queue_num)])
                    prev = jt.binary(prev, n, get_op(y))
                    q.append(prev)
                innum = rand(y,*inner_op_num)
                for _ in range(innum):
                    j = rand(y,0,len(q)-1)
                    n = q[j]
                    prev = jt.binary(prev, n, get_op(y))
                    q[j] = prev
                prev = rd(prev)
                queue[rand(x,0,input_queue_num)] = prev
            a = jt.array(0.0)
            for x in queue:
                a += x
            LOG.i("build graph", time.time()-start_time, jt.liveness_info().values())
            start_time = time.time()
            a.sync()
            LOG.i("execute", time.time()-start_time)
        # debug mode:  build(0.68), execute(0.44)
        # normal mode: build(0.56), execute(0.25)
        # cast opt:    build(0.50), execute(0.25)
        # dtype opt:   build(0.49), execute(0.25)
        # pyjt opt:    build(0.48), execute(0.25)
        # ns opt:      build(0.46), execute(0.24)
        # nv opt:      build(0.42), execute(0.23)
        # nv opt:      build(0.415),execute(0.225)
        # jit_key opt: build(0.415),execute(0.15)
        # jit_key opt: build(0.415),execute(0.11)
        # sv opt:      build(0.42), execute(0.12)
        # noded opt:   build(0.42), execute(0.10)

        # tcm opt:     build(0.40), execute(0.10)

        # mode2: reindex
        # jit_key opt: build(0.46),execute(0.12)
        # noded opt:   build(0.44),execute(0.11)
        # for i in range(20):
        #     run()
        for i in range(20):
            run()
        import gc
        gc.collect()
        run()
示例#26
0
def directional_lighting(diffuseLight,
                         specularLight,
                         normals,
                         light_intensity=0.5,
                         light_color=(1, 1, 1),
                         light_direction=(0, 1, 0),
                         positions=None,
                         eye=None,
                         with_specular=False,
                         metallic_textures=None,
                         roughness_textures=None,
                         Gbuffer="None",
                         transform=None):
    eye = jt.array(eye, "float32")
    light_color = jt.array(light_color, "float32")
    light_direction = jt.normalize(jt.array(light_direction, "float32"), dim=0)

    if len(light_color.shape) == 1:
        light_color = light_color.unsqueeze(0)
    if len(light_direction.shape) == 1:
        light_direction = light_direction.unsqueeze(0)

    cosine = nn.relu(jt.sum(normals * light_direction, dim=2))
    if with_specular:
        if len(metallic_textures.shape) == 4:
            total = metallic_textures.shape[2] * 1.0
            metallic_textures = jt.sum(metallic_textures, dim=2) / total
            roughness_textures = jt.sum(roughness_textures, dim=2) / total
        elif len(metallic_textures.shape) == 6:
            total = metallic_textures.shape[2] * metallic_textures.shape[
                3] * metallic_textures.shape[4] * 1.0
            metallic_textures = jt.sum(metallic_textures, dim=2)
            metallic_textures = jt.sum(metallic_textures, dim=2)
            metallic_textures = jt.sum(metallic_textures, dim=2)
            metallic_textures = metallic_textures / total
            roughness_textures = jt.sum(roughness_textures, dim=2)
            roughness_textures = jt.sum(roughness_textures, dim=2)
            roughness_textures = jt.sum(roughness_textures, dim=2)
            roughness_textures = roughness_textures / total

    #Microfacet model
    if with_specular and (eye is not None) and (positions is not None) and (
            metallic_textures is not None) and (roughness_textures
                                                is not None):
        N = normals
        if len(eye.shape) == 2:
            eye = eye.unsqueeze(1)
        V = jt.normalize(eye - positions, dim=2)
        L = light_direction
        H = jt.normalize(V + L, dim=2)

        #Default Setting
        metallic = metallic_textures
        roughness = roughness_textures
        F0 = jt.array((0.04, 0.04, 0.04), "float32")
        albedo = jt.array((1.0, 1.0, 1.0), "float32")

        F0 = F0.unsqueeze(0).unsqueeze(1) * (
            1 - metallic) + albedo.unsqueeze(0).unsqueeze(1) * metallic
        radiance = light_intensity * (light_color.unsqueeze(1) *
                                      cosine.unsqueeze(2))

        #Cook-Torrance BRDF
        NDF = GGX(N, H, roughness)
        G = GeometrySmith(N, V, L, roughness)
        F = fresnelSchlick(nn.relu(jt.sum(H * V, dim=2)), F0)
        KS = F
        KD = 1.0 - KS
        KD *= (1.0 - metallic)

        diffuseLight += KD * radiance
        numerator = NDF * G * F
        denominator = (4.0 * nn.relu(jt.sum(N * V, dim=2)) *
                       nn.relu(jt.sum(N * L, dim=2))).unsqueeze(2)
        specular = numerator / jt.clamp(denominator, 0.01)
        specularLight += specular * radiance
    else:
        diffuseLight += light_intensity * (light_color.unsqueeze(1) *
                                           cosine.unsqueeze(2))
    if Gbuffer == "normal":
        specularLight *= 0.0
        diffuseLight = normals * 0.5 + 0.5
    elif Gbuffer == "depth":
        specularLight *= 0.0
        viewpos = transform.tranpos(positions)
        diffuseLight = viewpos / jt.max(viewpos[..., 2])
        diffuseLight[..., 0] = viewpos[..., 2] / jt.max(viewpos[..., 2])
        diffuseLight[..., 1] = viewpos[..., 2] / jt.max(viewpos[..., 2])
    return [diffuseLight, specularLight]
示例#27
0
 def execute(self, input, target):
     ret = jt.abs(input - target)
     if self.reduction != None:
         ret = jt.mean(ret) if self.reduction == 'mean' else jt.sum(ret)
     return ret
示例#28
0
 def execute(self):
     self.renderer.eye = nr.get_points_from_angles(2.732, 0, 90)
     image = self.renderer(self.vertices, self.faces, mode='silhouettes')
     loss = jt.sum((image - self.image_ref.unsqueeze(0)).sqr())
     return loss
示例#29
0
    def execute(self, xyz1, xyz2, points1, points2):
        """
        Input:
            xyz1: input points position data, [B, C, N] 
            xyz2: sampled input points position data, [B, C, S]
            points1: input points data, [B, D, N]
            points2: input points data, [B, D, S]
        Return:
            new_points: upsampled points data, [B, D', N]
        """
        # print ('xyz1.shape, xyz2.shape')
        # print (xyz1.shape, xyz2.shape, points1.shape, points2.shape)

        xyz1 = xyz1.permute(0, 2, 1)
        xyz2 = xyz2.permute(0, 2, 1)
        points1 = points1.permute(0, 2, 1)
        points2 = points2.permute(0, 2, 1)
        B, N, C = xyz1.shape
        _, S, _ = xyz2.shape

        # points2 = points2.permute(0, 2, 1)
        # print (xyz1.shape, xyz2.shape)
        dists = square_distance(xyz1, xyz2)
        idx, dists = jt.argsort(dists, dim=-1)
        dists, idx = dists[:, :, :3], idx[:, :, :3]  # [B, N, 3]

        dist_recip = 1.0 / (dists + 1e-8)
        norm = jt.sum(dist_recip, dim=2, keepdims=True)
        weight = dist_recip / norm
        interpolated_points = jt.sum(index_points(points2, idx) *
                                     weight.view(B, N, 3, 1),
                                     dim=2)

        # print ('interpolated_points shape', interpolated_points.shape)

        xyz_density = compute_density(xyz1, self.bandwidth)
        density_scale = self.densitynet(xyz_density)

        new_xyz, new_points, grouped_xyz_norm, _, grouped_density = sample_and_group(
            N, self.nsample, xyz1, interpolated_points,
            density_scale.reshape(B, N, 1))

        new_points = new_points.permute(0, 3, 2, 1)  # [B, C+D, nsample,npoint]

        for i in range(len(self.mlp_convs)):
            conv = self.mlp_convs[i]
            bn = self.mlp_bns[i]
            # print ('new new new point shape', new_points.shape)
            new_points = self.relu(bn(conv(new_points)))

        grouped_xyz = grouped_xyz_norm.permute(0, 3, 2, 1)
        weights = self.weightnet(grouped_xyz)
        new_points = new_points * grouped_density.permute(0, 3, 2, 1)
        new_points = jt.matmul(new_points.permute(0, 3, 1, 2),
                               weights.permute(0, 3, 2, 1)).reshape(B, N, -1)
        new_points = self.linear(new_points)
        new_points = self.bn_linear(new_points.permute(0, 2, 1))
        new_points = self.relu(new_points)
        new_xyz = new_xyz.permute(0, 2, 1)

        return new_points
示例#30
0
 def entropy(self):
     return -jt.sum(jt.mean(self.probs) * jt.log(self.probs))