def update(self, *args, **kwargs):
        solutions = kwargs['SOLUTIONS']

        if solutions:
            variables = []
            for s in solutions:
                variables.append(s.objectives)

            hv = HyperVolume(self.referencePoint)
            hv.is_minimization = True
            self.currentHyperVolume = hv.compute(variables)

            variation = float(abs(self.lastHyperVolume - self.currentHyperVolume) / self.currentHyperVolume)

            if variation <= self.HyperVolumeStagnationPercentage:
                self.counter += 1
                if self.counter >= 15:
                    self.HasReachVariation = True
                else:
                    self.lastHyperVolume = copy.deepcopy(self.currentHyperVolume)
            else:
                self.lastHyperVolume = copy.deepcopy(self.currentHyperVolume)
                self.counter = 0
                self.HasReachVariation = False

            print(self.counter)
示例#2
0
    def test_should_hypervolume_return_5_0(self):
        reference_point = [2, 2, 2]

        front = np.array([[1, 0, 1], [0, 1, 0]])

        hv = HyperVolume(reference_point)
        value = hv.compute(front)

        self.assertEqual(5.0, value)
示例#3
0
    def test_should_hypervolume_return_the_correct_value_when_applied_to_the_ZDT1_reference_front(self):
        problem = ZDT1()
        problem.reference_front = read_solutions(filename='resources/reference_front/ZDT1.pf')

        reference_point = [1, 1]

        hv = HyperVolume(reference_point)
        value = hv.compute(problem.reference_front)

        self.assertAlmostEqual(0.666, value, delta=0.001)
示例#4
0
 def hv(true_front: NonDominatedSolutionsArchive,
        solution_list: List[Solution]) -> float:
     # prepare reference point and indicator
     reference_point = ResultHandler.find_reference_point(
         true_front.solution_list)
     indicator = HyperVolume(reference_point)
     mod = np.prod(reference_point)
     # prepare solution list in numpy array
     solutions = ResultHandler.to_numpy_array(solution_list)
     # calculate
     return indicator.compute(solutions) / mod
示例#5
0
    def test_should_hypervolume_return_5_0(self):
        reference_point = [2, 2, 2]

        solution1 = Solution(1, 3)
        solution1.objectives = [1, 0, 1]

        solution2 = Solution(1, 3)
        solution2.objectives = [0, 1, 0]

        front = [solution1, solution2]

        hv = HyperVolume(reference_point)
        value = hv.compute(front)

        self.assertEqual(5.0, value)
示例#6
0
def compute_hv(algorithm, upp_bound):
    hv_values = []
    for idx, front in algorithm.front_progress():
        f = get_raw_front(front, var_dict)
        hv_metric = HyperVolume(reference_point=upp_bound).compute(f)
        hv_values.append(hv_metric)
    return hv_values
示例#7
0
    def test_should_hypervolume_return_the_correct_value_when_applied_to_the_ZDT1_reference_front(
            self):
        filepath = Path(DIRNAME, "ZDT1.pf")
        front = []

        with open(filepath) as file:
            for line in file:
                vector = [float(x) for x in line.split()]
                front.append(vector)

        reference_point = [1, 1]

        hv = HyperVolume(reference_point)
        value = hv.compute(np.array(front))

        self.assertAlmostEqual(0.666, value, delta=0.001)
示例#8
0
    def test_should_hypervolume_return_the_correct_value_when_applied_to_the_ZDT1_reference_front(self):
        filename = 'jmetal/core/test/ZDT1.pf'
        front = []
        if Path(filename).is_file():
            with open(filename) as file:
                for line in file:
                    vector = [float(x) for x in line.split()]
                    front.append(vector)
        else:
            print("error")

        reference_point = [1, 1]

        hv = HyperVolume(reference_point)
        value = hv.compute(np.array(front))

        self.assertAlmostEqual(0.666, value, delta=0.001)
示例#9
0
    def test_should_SMPSO_work_when_solving_problem_ZDT1_with_standard_settings(self):
        problem = ZDT1()

        algorithm = SMPSO(
            problem=problem,
            swarm_size=100,
            mutation=PolynomialMutation(probability=1.0 / problem.number_of_variables, distribution_index=20),
            leaders=CrowdingDistanceArchive(100),
            termination_criterion=StoppingByEvaluations(max_evaluations=25000),
        )

        algorithm.run()
        front = algorithm.get_result()

        hv = HyperVolume(reference_point=[1, 1])
        value = hv.compute([front[i].objectives for i in range(len(front))])

        self.assertTrue(value >= 0.655)
示例#10
0
    def test_should_NSGAII_work_when_solving_problem_ZDT1_with_standard_settings(self):
        problem = ZDT1()

        max_evaluations = 25000

        algorithm = NSGAII(
            problem=problem,
            population_size=100,
            offspring_population_size=100,
            mutation=PolynomialMutation(probability=1.0 / problem.number_of_variables, distribution_index=20),
            crossover=SBXCrossover(probability=1.0, distribution_index=20),
            termination_criterion=StoppingByEvaluations(max_evaluations=max_evaluations),
        )

        algorithm.run()
        front = algorithm.get_result()

        hv = HyperVolume(reference_point=[1, 1])
        value = hv.compute([front[i].objectives for i in range(len(front))])

        self.assertTrue(value >= 0.65)
    def update(self, *args, **kwargs):
        self.evaluations = kwargs['EVALUATIONS']
        solutions = kwargs['SOLUTIONS']

        if solutions:
            variables = []
            for s in solutions:
                variables.append(s.objectives)

            hv = HyperVolume(self.referencePoint)
            hv.is_minimization = True
            self.hyperVolumes.append(hv.compute(variables))

            # TODO: Implement to IGD

            if self.evaluations >= self.max_evaluations:
                fileValue = self._getFileValue()
                filename = 'Hist/' + str(self.AlgorithmName) + '/' + 'HV-' + str(fileValue) + '.txt'
                with open(filename, 'w') as f:
                    for hv in self.hyperVolumes:
                        f.write(str(hv))
                        f.write('\n')
示例#12
0
        for r, _, fl in os.walk(output_directory):
            for file in fl:
                if 'FUN' in file and prb in r:
                    with open(os.path.join(r, file), 'r') as f:
                        line = f.readline()
                        while line:
                            tokens = line.split()
                            fitness = [float(x) for x in tokens]
                            s = Solution(None, fitness)
                            population.append(s)
                            line = f.readline()

        population = non_dominated_population(population,
                                              maximize=False,
                                              filter_duplicate=False)
        # save to file
        pf_file = os.path.dirname(output_directory).join(prb + ".pf")
        with open(pf_file, 'w') as f:
            for s in population:
                f.write("".join([str(v) + "\t" for v in s.fitness]))
                f.write("\n")

    # Generate summary file
    generate_summary_from_experiment(
        input_dir=output_directory,
        quality_indicators=[
            GenerationalDistance(reference_front=output_directory),
            EpsilonIndicator(reference_front=output_directory),
            HyperVolume([0, 0])
        ])
示例#13
0
 def compute(front, upp_bound):
     return HyperVolume(reference_point=upp_bound).compute(front)
示例#14
0
    def run(self) -> List[S]:
        # selection operator 1
        selection_operator_1 = BinaryTournamentSelection()
        # selection operator 2
        selection_operator_2 = DifferentialEvolutionSelection()
        # crossover operator 1
        crossover_operator_1 = SBXCrossover(1.0, 20.0)
        # crossover operator 2
        crossover_operator_2 = DifferentialEvolutionCrossover(0.2, 0.5, 0.5)
        # crossover operator 3
        crossover_operator_3 = DifferentialEvolutionCrossover(1.0, 0.5, 0.5)
        # mutation operator 1
        mutation_operator_1 = PolynomialMutation(
            1.0 / self.problem.number_of_variables, 20.0)
        # dominance comparator
        dominance = DominanceComparator()

        # array that stores the "generational" HV quality
        generational_hv: List[float] = []

        parent_1: List[FloatSolution] = [None, None]
        parent_2: List[FloatSolution] = []
        parent_3: List[FloatSolution] = []

        # initialize some local and global variables
        pool_1: List[FloatSolution] = []
        pool_2: List[FloatSolution] = []

        # size of elite subset used for fitness sharing between subpopulations
        nrOfDirectionalSolutionsToEvolve = int(self.population_size / 5)
        # subpopulation 1
        pool_1_size = int(self.population_size -
                          (nrOfDirectionalSolutionsToEvolve / 2))
        # subpopulation 2
        pool_2_size = int(self.population_size -
                          (nrOfDirectionalSolutionsToEvolve / 2))

        print(
            str(pool_1_size) + " - " + str(nrOfDirectionalSolutionsToEvolve) +
            " - " + str(self.mix_interval))

        evaluations = 0
        current_gen = 0
        directionalArchiveSize = 2 * self.population_size
        weights = self.__create_uniform_weights(
            directionalArchiveSize, self.problem.number_of_objectives)

        directionalArchive = self.__create_directional_archive(weights)
        neighbourhoods = self.__create_neighbourhoods(directionalArchive,
                                                      self.population_size)

        nrOfReplacements = 1
        iniID = 0

        # Create the initial pools
        # pool1
        pool_1: List[FloatSolution] = []
        for _ in range(pool_1_size):
            new_solution = self.problem.create_solution()
            new_solution = self.problem.evaluate(new_solution)
            evaluations += 1
            pool_1.append(new_solution)

            self.__update_extreme_values(new_solution)
            dr = directionalArchive[iniID]
            dr.curr_sol = new_solution
            iniID += 1
        # pool2
        pool_2: List[FloatSolution] = []
        for _ in range(pool_2_size):
            new_solution = self.problem.create_solution()
            new_solution = self.problem.evaluate(new_solution)
            evaluations += 1
            pool_2.append(new_solution)

            self.__update_extreme_values(new_solution)
            dr = directionalArchive[iniID]
            dr.curr_sol = new_solution
            iniID += 1
        # directional archive initialization
        pool_A: List[FloatSolution] = []
        while iniID < directionalArchiveSize:
            new_solution = self.problem.create_solution()
            new_solution = self.problem.evaluate(new_solution)
            evaluations += 1
            pool_A.append(new_solution)

            self.__update_extreme_values(new_solution)
            dr = directionalArchive[iniID]
            dr.curr_sol = new_solution
            iniID += 1

        mix = self.mix_interval
        h = HyperVolume(reference_point=[1] *
                        self.problem.number_of_objectives)

        insertionRate: List[float] = [0, 0, 0]
        bonusEvals: List[int] = [0, 0, nrOfDirectionalSolutionsToEvolve]
        testRun = True

        # record the generational HV of the initial population
        combiAll: List[FloatSolution] = []
        cGen = int(evaluations / self.report_interval)
        if cGen > 0:
            combiAll = pool_1 + pool_2 + pool_A
            combiAll = self.r.replace(
                combiAll[:pool_1_size + pool_2_size],
                combiAll[pool_1_size + pool_2_size:],
            )
            hval = h.compute([s.objectives for s in combiAll])
            for _ in range(cGen):
                generational_hv.append(hval)
            current_gen = cGen

        # the main loop of the algorithm
        while evaluations < self.max_evaluations:
            offspringPop1: List[FloatSolution] = []
            offspringPop2: List[FloatSolution] = []
            offspringPop3: List[FloatSolution] = []

            dirInsertPool1: List[FloatSolution] = []
            dirInsertPool2: List[FloatSolution] = []
            dirInsertPool3: List[FloatSolution] = []

            # evolve pool1 - using SPEA2 evolutionary model
            nfe: int = 0
            while nfe < (pool_1_size + bonusEvals[0]):
                parent_1[0] = selection_operator_1.execute(pool_1)
                parent_1[1] = selection_operator_1.execute(pool_1)

                child1a: FloatSolution = crossover_operator_1.execute(
                    parent_1)[0]
                child1a = mutation_operator_1.execute(child1a)

                child1a = self.problem.evaluate(child1a)
                evaluations += 1
                nfe += 1

                offspringPop1.append(child1a)
                dirInsertPool1.append(child1a)

            # evolve pool2 - using DEMO SP evolutionary model
            i: int = 0
            unselectedIDs: List[int] = []
            for ID in range(len(pool_2)):
                unselectedIDs.append(ID)

            nfe = 0
            while nfe < (pool_2_size + bonusEvals[1]):
                index = random.randint(0, len(unselectedIDs) - 1)
                i = unselectedIDs[index]
                unselectedIDs.pop(index)

                parent_2 = selection_operator_2.execute(pool_2)

                crossover_operator_2.current_individual = pool_2[i]
                child2 = crossover_operator_2.execute(parent_2)
                child2 = self.problem.evaluate(child2[0])

                evaluations += 1
                nfe += 1

                result = dominance.compare(pool_2[i], child2)

                if result == -1:  # solution i dominates child
                    offspringPop2.append(pool_2[i])
                elif result == 1:  # child dominates
                    offspringPop2.append(child2)
                else:  # the two solutions are non-dominated
                    offspringPop2.append(child2)
                    offspringPop2.append(pool_2[i])

                dirInsertPool2.append(child2)

                if len(unselectedIDs) == 0:
                    for ID in range(len(pool_2)):
                        unselectedIDs.append(random.randint(
                            0,
                            len(pool_2) - 1))

            # evolve pool3 - Directional Decomposition DE/rand/1/bin
            IDs = self.__compute_neighbourhood_Nfe_since_last_update(
                neighbourhoods, directionalArchive,
                nrOfDirectionalSolutionsToEvolve)

            nfe = 0
            for j in range(len(IDs)):
                if nfe < bonusEvals[2]:
                    nfe += 1
                else:
                    break

                cID = IDs[j]

                chosenSol: FloatSolution = None
                if directionalArchive[cID].curr_sol != None:
                    chosenSol = directionalArchive[cID].curr_sol
                else:
                    chosenSol = pool_1[0]
                    print("error!")

                parent_3: List[FloatSolution] = [None, None, None]

                r1 = random.randint(0, len(neighbourhoods[cID]) - 1)
                r2 = random.randint(0, len(neighbourhoods[cID]) - 1)
                r3 = random.randint(0, len(neighbourhoods[cID]) - 1)
                while r2 == r1:
                    r2 = random.randint(0, len(neighbourhoods[cID]) - 1)
                while r3 == r1 or r3 == r2:
                    r3 = random.randint(0, len(neighbourhoods[cID]) - 1)

                parent_3[0] = directionalArchive[r1].curr_sol
                parent_3[1] = directionalArchive[r2].curr_sol
                parent_3[2] = directionalArchive[r3].curr_sol

                crossover_operator_3.current_individual = chosenSol
                child3 = crossover_operator_3.execute(parent_3)[0]
                child3 = mutation_operator_1.execute(child3)

                child3 = self.problem.evaluate(child3)
                evaluations += 1

                dirInsertPool3.append(child3)

            # compute directional improvements
            # pool1
            improvements = 0
            for j in range(len(dirInsertPool1)):
                testSol = dirInsertPool1[j]
                self.__update_extreme_values(testSol)
                improvements += self.__update_neighbourhoods(
                    directionalArchive, testSol, nrOfReplacements)
            insertionRate[0] += (1.0 * improvements) / len(dirInsertPool1)

            # pool2
            improvements = 0
            for j in range(len(dirInsertPool2)):
                testSol = dirInsertPool2[j]
                self.__update_extreme_values(testSol)
                improvements += self.__update_neighbourhoods(
                    directionalArchive, testSol, nrOfReplacements)
            insertionRate[1] += (1.0 * improvements) / len(dirInsertPool2)

            # pool3
            improvements = 0
            for j in range(len(dirInsertPool3)):
                testSol = dirInsertPool3[j]
                self.__update_extreme_values(testSol)
                improvements += self.__update_neighbourhoods(
                    directionalArchive, testSol, nrOfReplacements)
            # on java, dividing a floating number by 0, returns NaN
            # on python, dividing a floating number by 0, returns an exception
            if len(dirInsertPool3) == 0:
                insertionRate[2] = None
            else:
                insertionRate[2] += (1.0 * improvements) / len(dirInsertPool3)

            for dr in directionalArchive:
                offspringPop3.append(dr.curr_sol)

            offspringPop1 = offspringPop1 + pool_1
            pool_1 = self.r.replace(offspringPop1[:pool_1_size],
                                    offspringPop1[pool_1_size:])
            pool_2 = self.r.replace(offspringPop2[:pool_2_size],
                                    offspringPop2[pool_2_size:])

            combi: List[FloatSolution] = []
            mix -= 1

            if mix == 0:
                mix = self.mix_interval
                combi = combi + pool_1 + pool_2 + offspringPop3
                print("Combi size: " + str(len(combi)))

                combi = self.r.replace(
                    combi[:nrOfDirectionalSolutionsToEvolve],
                    combi[nrOfDirectionalSolutionsToEvolve:],
                )

                insertionRate[0] /= self.mix_interval
                insertionRate[1] /= self.mix_interval
                if insertionRate[2] != None:
                    insertionRate[2] /= self.mix_interval
                """
                print(
                    "Insertion rates: "
                    + str(insertionRate[0])
                    + " - "
                    + str(insertionRate[1])
                    + " - "
                    + str(insertionRate[2])
                    + " - Test run:"
                    + str(testRun)
                )
                """
                if testRun:
                    if (insertionRate[0] > insertionRate[1]) and (
                            insertionRate[0] > insertionRate[2]):
                        print("SPEA2 win - bonus run!")
                        bonusEvals[0] = nrOfDirectionalSolutionsToEvolve
                        bonusEvals[1] = 0
                        bonusEvals[2] = 0
                    if (insertionRate[1] > insertionRate[0]) and (
                            insertionRate[1] > insertionRate[2]):
                        print("DE win - bonus run!")
                        bonusEvals[0] = 0
                        bonusEvals[1] = nrOfDirectionalSolutionsToEvolve
                        bonusEvals[2] = 0
                    if (insertionRate[2] > insertionRate[0]) and (
                            insertionRate[2] > insertionRate[1]):
                        print("Directional win - no bonus!")
                        bonusEvals[0] = 0
                        bonusEvals[1] = 0
                        bonusEvals[2] = nrOfDirectionalSolutionsToEvolve
                else:
                    print("Test run - no bonus!")
                    bonusEvals[0] = 0
                    bonusEvals[1] = 0
                    bonusEvals[2] = nrOfDirectionalSolutionsToEvolve

                testRun = not testRun

                insertionRate[0] = 0.0
                insertionRate[1] = 0.0
                insertionRate[2] = 0.0

                pool_1 = pool_1 + combi
                pool_2 = pool_2 + combi
                print("Sizes: " + str(len(pool_1)) + " " + str(len(pool_2)))

                pool_1 = self.r.replace(pool_1[:pool_1_size],
                                        pool_1[pool_1_size:])
                pool_2 = self.r.replace(pool_2[:pool_2_size],
                                        pool_2[pool_2_size:])

                self.__clear_Nfe_history(directionalArchive)

            hVal1 = h.compute([s.objectives for s in pool_1])
            hVal2 = h.compute([s.objectives for s in pool_2])
            hVal3 = h.compute([s.objectives for s in offspringPop3])

            newGen = int(evaluations / self.report_interval)

            if newGen > current_gen:
                print("Hypervolume: " + str(newGen) + " - " + str(hVal1) +
                      " - " + str(hVal2) + " - " + str(hVal3))
                combi = combi + pool_1 + pool_2 + offspringPop3
                combi = self.r.replace(combi[:self.population_size * 2],
                                       combi[self.population_size * 2:])
                hval = h.compute([s.objectives for s in combi])
                for j in range(current_gen, newGen):
                    generational_hv.append(hval)
                current_gen = newGen

        # return the final combined non-dominated set of maximum size = (populationSize * 2)
        combiAll: List[FloatSolution] = []
        combiAll = combiAll + pool_1 + pool_2 + pool_A
        combiAll = self.r.replace(combiAll[:self.population_size * 2],
                                  combiAll[self.population_size * 2:])
        return combiAll
示例#15
0
    def run(self) -> List[S]:
        pool_1_size = self.population_size
        pool_2_size = self.population_size

        selection_operator_1 = BinaryTournamentSelection()
        crossover_operator_1 = IntegerSBXCrossover(1.0, 20.0)
        mutation_operator_1 = IntegerPolynomialMutation(
            1.0 / self.problem.number_of_variables, 20.0)
        selection_operator_2 = DifferentialEvolutionSelection()
        crossover_operator_2 = DifferentialEvolutionCrossover(0.2, 0.5, 0.5)

        dominance = DominanceComparator()

        max_iterations = self.max_iterations
        iterations = 0

        parent_1: List[IntegerSolution] = [None, None]

        generational_hv: List[float] = []

        current_gen = 0
        """Create the initial subpopulation pools and evaluate them"""
        pool_1: List[IntegerSolution] = []
        for i in range(pool_1_size):
            pool_1.append(self.problem.create_solution())
            pool_1[i] = self.problem.evaluate(pool_1[i])

        pool_2: List[IntegerSolution] = []
        for i in range(pool_2_size):
            pool_2.append(self.problem.create_solution())
            pool_2[i] = self.problem.evaluate(pool_2[i])

        evaluations = pool_1_size + pool_2_size

        mix = self.mix_interval

        problem = self.problem

        h = HyperVolume(reference_point=[1] *
                        self.problem.number_of_objectives)

        initial_population = True
        """The main evolutionary cycle"""
        while iterations < max_iterations:
            combi: List[IntegerSolution] = []
            if not initial_population:
                offspring_pop_1: List[IntegerSolution] = []
                offspring_pop_2: List[IntegerSolution] = []
                """Evolve pool 1"""
                for i in range(pool_1_size):
                    parent_1[0] = selection_operator_1.execute(pool_1)
                    parent_1[1] = selection_operator_1.execute(pool_1)

                    child_1: IntegerSolution = crossover_operator_1.execute(
                        parent_1)[0]
                    child_1 = mutation_operator_1.execute(child_1)

                    child_1 = problem.evaluate(child_1)
                    evaluations += 1

                    offspring_pop_1.append(child_1)
                """Evolve pool 2"""
                for i in range(pool_2_size):
                    parent_2: List[
                        IntegerSolution] = selection_operator_2.execute(pool_2)

                    crossover_operator_2.current_individual = pool_2[i]
                    child_2 = crossover_operator_2.execute(parent_2)
                    child_2 = problem.evaluate(child_2[0])

                    evaluations += 1

                    result = dominance.compare(pool_2[i], child_2)

                    if result == -1:
                        offspring_pop_2.append(pool_2[i])
                    elif result == 1:
                        offspring_pop_2.append(child_2)
                    else:
                        offspring_pop_2.append(child_2)
                        offspring_pop_2.append(pool_2[i])

                ind_1 = pool_1[random.randint(0, pool_1_size - 1)]
                ind_2 = pool_2[random.randint(0, pool_2_size - 1)]

                offspring_pop_1.append(ind_1)
                offspring_pop_2.append(ind_2)

                offspring_pop_1.extend(pool_1)
                pool_1 = self.r.replace(offspring_pop_1[:pool_1_size],
                                        offspring_pop_1[pool_1_size:])

                pool_2 = self.r.replace(offspring_pop_2[:pool_2_size],
                                        offspring_pop_2[pool_2_size:])

                mix -= 1
                if mix == 0:
                    """Time to perform fitness sharing"""
                    mix = self.mix_interval
                    combi = combi + pool_1 + pool_2
                    # print("Combi size: ", len(combi))
                    """pool1size/10"""

                    combi = self.r.replace(
                        combi[:int(pool_1_size / 10)],
                        combi[int(pool_1_size / 10):len(combi)],
                    )
                    """
                    print(
                        "Sizes: ",
                        len(pool_1) + len(combi),
                        len(pool_2) + len(combi),
                        "\n",
                    )
                    """
                    pool_1 = self.r.replace(pool_1, combi)

                    pool_2 = self.r.replace(pool_2, combi)

            if initial_population:
                initial_population = False

            iterations += 1
            print("Iterations: ", str(iterations))
            """
            hval_1 = h.compute([s.objectives for s in pool_1])
            hval_2 = h.compute([s.objectives for s in pool_2])
            print("hval_1: ", str(hval_1))
            print("hval_2: ", str(hval_2), "\n")
            """

            new_gen = int(evaluations / self.report_interval)
            if new_gen > current_gen:
                combi = combi + pool_1 + pool_2

                combi = self.r.replace(combi[:(2 * pool_1_size)],
                                       combi[(2 * pool_1_size):])

                hval = h.compute([s.objectives for s in combi])
                for i in range(current_gen, new_gen, 1):
                    generational_hv.append(hval)

                current_gen = new_gen
        """#Write runtime generational HV to file"""
        """Return the first non dominated front"""
        combi_ini: List[IntegerSolution] = []
        combi_ini.extend(pool_1)
        combi_ini.extend(pool_2)
        combi_ini = self.r.replace(
            combi_ini[:pool_1_size + pool_2_size],
            combi_ini[pool_1_size + pool_2_size:],
        )
        return combi_ini
示例#16
0
    problem.reference_front = read_solutions(filename='resources/reference_front/DTLZ2.3D.pf')

    max_evaluations = 50000

    algorithm = MOEAD(
        problem=problem,
        population_size=300,
        crossover=DifferentialEvolutionCrossover(CR=1.0, F=0.5),
        mutation=PolynomialMutation(probability=1.0 / problem.number_of_variables, distribution_index=20),
        aggregative_function=Tschebycheff(dimension=problem.number_of_objectives),
        neighbor_size=20,
        neighbourhood_selection_probability=0.9,
        max_number_of_replaced_solutions=2,
        weight_files_path='resources/MOEAD_weights',
        termination_criterion=StoppingByEvaluations(max_evaluations=max_evaluations)
    )

    algorithm.run()
    front = algorithm.get_result()

    hypervolume = HyperVolume([1.0, 1.0, 1.0])
    print("Hypervolume: " + str(hypervolume.compute([front[i].objectives for i in range(len(front))])))

    # Save results to file
    print_function_values_to_file(front, 'FUN.' + algorithm.label)
    print_variables_to_file(front, 'VAR.'+ algorithm.label)

    print(f'Algorithm: ${algorithm.get_name()}')
    print(f'Problem: ${problem.get_name()}')
    print(f'Computing time: ${algorithm.total_computing_time}')
示例#17
0
    max=max_evaluations))
# algorithm.observable.register(
#     observer=VisualizerObserver(reference_front=problem.reference_front, display_frequency=100))

algorithm.run()
front = algorithm.get_result()
print(front)
plot_front = Plot(title='Pareto front approximation',
                  reference_front=problem.reference_front,
                  axis_labels=problem.obj_labels)
plot_front.plot(front,
                label='NSGAIII-' + problem.get_name(),
                filename='../images/' + algorithm.get_name() + "-" +
                problem.get_name(),
                format='png')

# Plot interactive front
plot_front = InteractivePlot(title='Pareto front approximation. Problem: ' +
                             problem.get_name(),
                             reference_front=problem.reference_front,
                             axis_labels=problem.obj_labels)
plot_front.plot(
    front,
    label='NSGAIII-' + problem.get_name(),
    filename='../images/' + algorithm.get_name() + "-" + problem.get_name(),
)

hv = HyperVolume(reference_point=[1, 1, 1, 1]).compute(
    [front[i].objectives for i in range(len(front))])
print(f"hypervolume = {hv}")
示例#18
0
        problem=problem,
        population_size=300,
        crossover=DifferentialEvolutionCrossover(CR=1.0, F=0.5),
        mutation=PolynomialMutation(probability=1.0 /
                                    problem.number_of_variables,
                                    distribution_index=20),
        aggregative_function=Tschebycheff(
            dimension=problem.number_of_objectives),
        neighbor_size=20,
        neighbourhood_selection_probability=0.9,
        max_number_of_replaced_solutions=2,
        weight_files_path="resources/MOEAD_weights",
        termination_criterion=StoppingByEvaluations(
            max_evaluations=max_evaluations),
    )

    algorithm.run()
    front = algorithm.get_result()

    hypervolume = HyperVolume([1.0, 1.0, 1.0])
    print("Hypervolume: " + str(
        hypervolume.compute([front[i].objectives for i in range(len(front))])))

    # Save results to file
    print_function_values_to_file(front, "FUN." + algorithm.label)
    print_variables_to_file(front, "VAR." + algorithm.label)

    print(f"Algorithm: {algorithm.get_name()}")
    print(f"Problem: {problem.get_name()}")
    print(f"Computing time: {algorithm.total_computing_time}")
示例#19
0
def main(objectives=2, seed=64):
    random.seed(seed)

    # Create the item dictionary: item name is an integer, and value is 
    # a (weight, value) 2-uple.
    if objectives == 2:
        # creator.create("Fitness", base.Fitness, weights=(-1.0, 1.0,1.0))
        creator.create("Fitness", base.Fitness, weights=( 1.0,1.0))
    
    else:
        print ("No evaluation function available for", objectives, "objectives.")
        sys.exit(-1)

        
    creator.create("Individual", set, fitness=creator.Fitness)

    toolbox = base.Toolbox()

    # Attribute generator
    toolbox.register("attr_item", random.randrange, NBR_ITEMS)

    # Structure initializers
    toolbox.register("individual", tools.initRepeat, creator.Individual, 
                     toolbox.attr_item, IND_INIT_SIZE)
    toolbox.register("population", tools.initRepeat, list, toolbox.individual)

    if objectives == 2:
        toolbox.register("evaluate", evalKnapsack)
    # elif objectives == 3:
    #     toolbox.register("evaluate", evalKnapsackBalanced)
    else:
        print ("No evaluation function available for", objectives, "objectives.")
        sys.exit(-1)
        

    toolbox.register("mate", cxSet)
    toolbox.register("mutate", mutSet)
    toolbox.register("select", tools.selSPEA2)

    pop = toolbox.population(n=MU)
    hof = tools.ParetoFront()
    
    HV = HyperVolume([1.0,1.0])
    stats = tools.Statistics(lambda ind: ind.fitness.values)
   
     HV.compute(list(zip(objective1,objective2))
    stats.register("avg", numpy.mean, axis=0)
    stats.register("std", numpy.std, axis=0)
    stats.register("min", numpy.min, axis=0)
    stats.register("max", numpy.max, axis=0)
    
    algorithms.eaMuPlusLambda(pop, toolbox, MU, LAMBDA, CXPB, MUTPB, NGEN, stats,
                               halloffame=hof)
    # algorithms.eaSimple(pop, toolbox,  CXPB, MUTPB, NGEN, stats,halloffame=hof)                          

    

    # stats = {}
    # def lambda_factory(idx):
    #     return lambda ind: ind.fitness.values[idx]                

    # fitness_tags = ["Weight", "Value"]
    # for tag in fitness_tags:
    #     s = tools.Statistics( key=lambda_factory(
    #                 fitness_tags.index(tag)
    #             ))
    #     stats[tag] = s

    # mstats = tools.MultiStatistics(**stats)
    # mstats.register("avg", numpy.mean, axis=0)
    # mstats.register("std", numpy.std, axis=0)
    # mstats.register("min", numpy.min, axis=0)
    # mstats.register("max", numpy.max, axis=0)

    # ea = MOEAD(pop, toolbox, MU, CXPB, MUTPB, ngen=NGEN, stats=mstats, halloffame=hof, nr=LAMBDA)
    # pop = ea.execute()
    
    return pop, stats, hof
                 
if __name__ == "__main__":
    objectives = 2
    seed = 64
    if len(sys.argv) > 1:
        seed = int(sys.argv[1])
    if len(sys.argv) > 2:
        objectives = int(sys.argv[2])

    pop,stats,hof = main(objectives)

    pop = [str(p) +" "+ str(p.fitness.values) for p in pop]
    hof = [str(h) +" "+ str(h.fitness.values) for h in hof]
    for item in hof:
        print(item)

    print ("POP:")
    print ("\n".join(pop))
    
    print ("PF:")
    print ("\n".join(hof))
示例#20
0
                        termination_criterion=StoppingByEvaluationsCustom(max_evaluations=max_evaluations,
                                                                          reference_point=REFERENCE_POINT,
                                                                          AlgorithmName='SMPSO')
                    ),
                    algorithm_tag='SMPSO',
                    problem_tag=problem_tag,
                    run=run,
                )
            )
    return jobs


if __name__ == '__main__':
    # Configure the experiments
    jobs = configure_experiment(problems={'OTN': problemOTN}, n_run=TIMES_TO_RUN)

    # Run the study
    output_directory = 'data'
    experiment = Experiment(output_dir=output_directory, jobs=jobs)
    experiment.run()

    Filter.RemovePenalty(output_directory)

    # Reference fronts is the folder where is the reference to be compared with.
    generate_summary_from_experiment(
        input_dir=output_directory,
        reference_fronts='C:\\Users\\aryss\\Documents\\Repositories\\OTN_Mastering\\Output\\CT3\\8 services',
        quality_indicators=[InvertedGenerationalDistance(), EpsilonIndicator(), HyperVolume(REFERENCE_POINT)]
        #quality_indicators = [HyperVolume(REFERENCE_POINT)]
    )