示例#1
0
from jmetal.algorithm.multiobjective.nsgaii import NSGAII
from jmetal.operator import PolynomialMutation, SBXCrossover
from jmetal.problem import DTLZ2
from jmetal.util.comparator import DominanceComparator
from jmetal.util.solution import (
    print_function_values_to_file,
    print_variables_to_file,
    read_solutions,
)
from jmetal.util.termination_criterion import StoppingByEvaluations

if __name__ == "__main__":
    problem = DTLZ2()
    problem.reference_front = read_solutions(filename="resources/reference_front/DTLZ2.3D.pf")

    max_evaluations = 25000
    algorithm = NSGAII(
        problem=problem,
        population_size=100,
        offspring_population_size=100,
        mutation=PolynomialMutation(probability=1.0 / problem.number_of_variables, distribution_index=20),
        crossover=SBXCrossover(probability=1.0, distribution_index=20),
        termination_criterion=StoppingByEvaluations(max_evaluations=max_evaluations),
        dominance_comparator=DominanceComparator(),
    )

    algorithm.run()
    front = algorithm.get_result()

    # Save results to file
    print_function_values_to_file(front, "FUN." + algorithm.label)
示例#2
0
from jmetal.algorithm.multiobjective.smpso import SMPSO
from jmetal.operator import PolynomialMutation
from jmetal.problem import DTLZ2
from jmetal.util.archive import CrowdingDistanceArchive
from jmetal.util.observer import ProgressBarObserver
from jmetal.util.termination_criterion import StoppingByEvaluations
from jmetal.util.visualization.chord_plot import chord_diagram

if __name__ == '__main__':
    problem = DTLZ2(number_of_objectives=5)

    algorithm = SMPSO(problem=problem,
                      swarm_size=100,
                      mutation=PolynomialMutation(probability=1.0 /
                                                  problem.number_of_variables,
                                                  distribution_index=20),
                      leaders=CrowdingDistanceArchive(100),
                      termination_criterion=StoppingByEvaluations(max=25000))

    algorithm.observable.register(observer=ProgressBarObserver(max=25000))

    algorithm.run()
    front = algorithm.get_result()

    # Chord interactive plot
    chord_diagram(front, nbins='auto')
    print(
        'Hover mouse over the white patches to depict samples as chords among objectives'
    )