示例#1
0
from jmetal.problem.singleobjective.unconstrained import Rastrigin
from jmetal.util.observer import PrintObjectivesObserver
from jmetal.util.solution_list import print_function_values_to_file, print_variables_to_file
from jmetal.util.termination_criterion import StoppingByEvaluations

if __name__ == '__main__':
    problem = Rastrigin(10)

    max_evaluations = 100000
    algorithm = LocalSearch(
        problem=problem,
        mutation=PolynomialMutation(1.0 / problem.number_of_variables, 20.0),
        termination_criterion=StoppingByEvaluations(max=max_evaluations)
    )

    objectives_observer = PrintObjectivesObserver(frequency=1000)
    algorithm.observable.register(observer=objectives_observer)

    algorithm.run()
    result = algorithm.get_result()

    # Save results to file
    print_function_values_to_file(result, 'FUN.'+ algorithm.get_name() + "." + problem.get_name())
    print_variables_to_file(result, 'VAR.' + algorithm.get_name() + "." + problem.get_name())

    print('Algorithm: ' + algorithm.get_name())
    print('Problem: ' + problem.get_name())
    print('Solution: ' + str(result.variables))
    print('Fitness:  ' + str(result.objectives[0]))
    print('Computing time: ' + str(algorithm.total_computing_time))
示例#2
0
if __name__ == '__main__':
    problem = Rastrigin(10)

    max_evaluations = 50000
    algorithm = NSGAII(
        problem=problem,
        population_size=100,
        offspring_population_size=100,
        mutation=PolynomialMutation(probability=1.0 /
                                    problem.number_of_variables,
                                    distribution_index=20.0),
        crossover=SBXCrossover(probability=0.9, distribution_index=20.0),
        termination_criterion=StoppingByEvaluations(max=max_evaluations),
        dominance_comparator=DominanceComparator())

    algorithm.observable.register(observer=PrintObjectivesObserver(1000))

    algorithm.run()
    front = algorithm.get_result()

    # Save results to file
    print_function_values_to_file(
        front, 'FUN.' + algorithm.get_name() + "-" + problem.get_name())
    print_variables_to_file(
        front, 'VAR.' + algorithm.get_name() + "-" + problem.get_name())

    print('Algorithm (continuous problem): ' + algorithm.get_name())
    print('Problem: ' + problem.get_name())
    print('Computing time: ' + str(algorithm.total_computing_time))
from jmetal.algorithm.singleobjective.genetic_algorithm import GeneticAlgorithm
from jmetal.operator import BitFlipMutation, SPXCrossover, BinaryTournamentSelection
from jmetal.problem import OneMax
from jmetal.util.observer import PrintObjectivesObserver
from jmetal.util.termination_criterion import StoppingByEvaluations

if __name__ == '__main__':
    problem = OneMax(number_of_bits=1024)

    algorithm = GeneticAlgorithm(
        problem=problem,
        population_size=100,
        offspring_population_size=100,
        mutation=BitFlipMutation(1.0 / problem.number_of_bits),
        crossover=SPXCrossover(1.0),
        selection=BinaryTournamentSelection(),
        termination_criterion=StoppingByEvaluations(max=20000))

    algorithm.observable.register(observer=PrintObjectivesObserver(
        frequency=1000))

    algorithm.run()
    result = algorithm.get_result()

    print('Algorithm: {}'.format(algorithm.get_name()))
    print('Problem: {}'.format(problem.get_name()))
    print('Solution: ' + result.get_binary_string())
    print('Fitness:  ' + str(result.objectives[0]))
    print('Computing time: {}'.format(algorithm.total_computing_time))