def readTestFunctions(self): """For each TestFile we are running tests in, load the list of test functions in that file""" #XXX TODO - error handling if a test is specified that does not exist sys.stderr.write("Finding tests...\n") def get_job(test_file): def get_tests(): def callback(rv, signal, proc, killed): test_file.updateTestLists(rv) if test_file.compile_failed: self.uncompiled_files.append(test_file) else: self.compiled_files.append(test_file) return test_file.getTests(self.engine), callback, None return get_tests test_finder = JobRunner(self.num_processes, timeout=30) for path, test_file in self.tests.iteritems(): self.all_files.append(relpath(path, test_path)) test_finder.queue([get_job(test_file)]) test_finder.run()
def test_arrayjob(tmpdir): """Verify array jobs have multiple processes, separate log files for each task, and support parameter substitution.. """ array_file_path = tmpdir.join("array_file") array_file_path.write("World 1\nWorld 2\nWorld 3\n") log_file_path = tmpdir.join("logfile.log") runner = JobRunner("local") runner.run_array("echo Hello {1} {2}", "JobName", str(log_file_path), str(array_file_path)) assert (tmpdir.join("logfile.log-1").read() == "Hello World 1\n") assert (tmpdir.join("logfile.log-2").read() == "Hello World 2\n") assert (tmpdir.join("logfile.log-3").read() == "Hello World 3\n")
def test_quiet_run(tmpdir, capfd): """Verify NO tee output to stdout when not in quiet mode, and logfile captures all. """ log_file_path = tmpdir.join("logfile.log") runner = JobRunner("local") runner.run("(echo text to stdout; echo text to stderr 1>&2)", "JobName", str(log_file_path), quiet=True) captured = capfd.readouterr() assert (tmpdir.join("logfile.log").read() == 'text to stdout\ntext to stderr\n') assert (len(captured.out) == 0) assert (len(captured.err) == 0)
def test_noisy_array_run(tmpdir, capfd): """Verify tee output to stdout when not in quiet mode, and logfile captures all. """ array_file_path = tmpdir.join("array_file") array_file_path.write("text\n") log_file_path = tmpdir.join("logfile.log") runner = JobRunner("local") runner.run_array("(echo {1} to stdout; echo {1} to stderr 1>&2)", "JobName", str(log_file_path), str(array_file_path), quiet=False) captured = capfd.readouterr() assert (tmpdir.join("logfile.log-1").read() == 'text to stdout\ntext to stderr\n') assert ("text to stdout" in captured.out) assert ("text to stderr" in captured.out) assert (len(captured.err) == 0)
def runTests(self): all_tests = TestSet() passed = TestSet() failed = TestSet() valgrind = TestSet() crashed = TestSet() timed_out = TestSet() def get_job(test): def run_job(): def callback(rv, signal, proc, killed): test.setStatus(rv, signal, proc, killed) #This is cleanup code that should perhaps be elsewhere if test.testrunner_fn is not None: os.unlink(test.testrunner_fn) if test.test_code_fn is not None: os.unlink(test.test_code_fn) test.testrunner_fn = None return test.run( self.engine, opts.engine_args), callback, test.timeout_multipler return run_job def get_job_fast(test_file): def run_job(): def callback(rv, signal, proc, killed): test_file.setTestsStatus(rv, signal, proc, killed) #This is cleanup code that should perhaps be elsewhere if test_file.testrunner_fn is not None: os.unlink(test_file.testrunner_fn) test_file.testrunner_fn = None return test_file.runFile(self.engine, opts.engine_args), callback, None return run_job sys.stderr.write("Running tests...\n") if opts.fast: timeout = 10 elif opts.valgrind: timeout = 30 * 50 else: timeout = 30 test_runner = JobRunner(self.num_processes, timeout=timeout) if opts.fast: for test_file in self.compiled_files: test_names = self.test_cases[test_file.path] test_file.setTests(test_names) test_runner.queue([get_job_fast(test_file)]) else: for test_file in self.compiled_files: test_names = self.test_cases[test_file.path] test_runner.queue( [get_job(item) for item in test_file.setTests(test_names)]) test_runner.run() crashed_files = [] for test_file in self.compiled_files: if opts.fast and test_file.crashed: crashed_files.append(test_file) continue all_tests |= test_file.testsRun() passed |= test_file.testsPassed() failed |= test_file.testsFailed() valgrind |= test_file.testsValgrind() crashed |= test_file.testsCrashed() timed_out |= test_file.testsTimedOut() results = regression.Results( getEngineName(self.engine), passed, failed, valgrind, crashed, timed_out, loaded_files=self.all_files, compile_failed=[f.relative_path for f in self.uncompiled_files], crashed_files=[f.relative_path for f in crashed_files]) tests_by_id = {} for test_file in self.tests.itervalues(): for test in test_file.itervalues(): tests_by_id[test.id] = test return tests_by_id, results
def run(args): """Run all the steps of the snp pipeline in th correct order. Parameters ---------- args : Namespace referenceFile : str Relative or absolute path to the reference fasta file forceFlag : bool Force processing even when result files already exist and are newer than inputs mirror : str Mode to create a mirror copy of the reference directory and all the sample directories. Possible values: {soft, hard, copy} configFile : str Relative or absolute path to a configuration file for overriding defaults and defining extra parameters for the tools and scripts within the pipeline. jobQueueMgr : str Job queue manager for remote parallel job execution in an HPC environment. Currently "torque" and "grid" are supported. If not specified, the pipeline will execute locally. workDir : str Output directory for the result files. samplesDir : str Relative or absolute path to the parent directory of all the sample directories. samplesFile : str Relative or absolute path to a file listing all of the sample directories. """ global log_dir global job_queue_mgr start_time = time.time() # Where are we running: grid, torque, or None (local) job_queue_mgr = args.jobQueueMgr # Erase any left-over error log environment variable from a previous run os.environ.pop("errorOutputFile", None) # the 2nd arg avoids an exception when not in dict # Handle output working directory. Create the directory if it does not exist. # Any errors creating the work_dir will not be logged to the error log because # the error log belongs in the work_dir. work_dir = args.workDir try: utils.mkdir_p(work_dir) except OSError as exc: utils.fatal_error("Error: could not create the output directory %s" % work_dir) if not utils.is_directory_writeable(work_dir): utils.fatal_error("Error: output directory % is not writable." % work_dir) # The error log is in the main workdir error_output_file = os.path.join(work_dir, "error.log") os.environ["errorOutputFile"] = error_output_file # TODO: copy old error log to old logs directory, because otherwise it will be removed and lost forever if os.path.isfile(error_output_file): os.remove(error_output_file) # Validate reference fasta file reference_file_path = args.referenceFile if not os.path.isfile(reference_file_path): utils.fatal_error("Error: reference file %s does not exist." % reference_file_path) if os.path.getsize(reference_file_path) == 0: utils.fatal_error("Error: reference file %s is empty." % reference_file_path) reference_file_name = os.path.basename(reference_file_path) # Force rebuild flag is passed to all the subtask commands below force_flag = " -f " if args.forceFlag else " " # Create the logs directory with name like "logs-20170215.144253" run_time_stamp = time.strftime('%Y%m%d.%H%M%S', time.localtime()) log_dir = os.path.join(work_dir, "logs-" + run_time_stamp) try: utils.mkdir_p(log_dir) except OSError as exc: utils.fatal_error("Error: could not create the logs directory %s" % log_dir) if not utils.is_directory_writeable(work_dir): utils.fatal_error("Error: logs directory % is not writable." % log_dir) # Handle configuration file, use the specified file, or create a default file if args.configFile: config_file_path = args.configFile if not os.path.isfile(config_file_path): utils.fatal_error("Error: configuration file %s does not exist." % config_file_path) if os.path.getsize(config_file_path) == 0: utils.fatal_error("Error: configuration file %s is empty." % config_file_path) shutil.copy2(config_file_path, log_dir) # copy2 tries to preserve timestamps config_params = utils.read_properties(config_file_path, recognize_vars=True) validate_properties(config_params) else: command.run("cfsan_snp_pipeline data configurationFile " + log_dir, outfile=sys.stdout) config_file_path = os.path.join(log_dir, "snppipeline.conf") config_params = utils.read_properties(config_file_path, recognize_vars=True) # Validate the configured aligner choice snp_pipeline_aligner = config_params.get("SnpPipeline_Aligner", "").lower() or "bowtie2" if snp_pipeline_aligner not in ["bowtie2", "smalt"]: utils.fatal_error("Config file error in SnpPipeline_Aligner parameter: only bowtie2 and smalt aligners are supported.") os.environ["SnpPipeline_Aligner"] = snp_pipeline_aligner # Stop the pipeline by default upon single sample errors if not configured either way # The environment variable is used by called processes stop_on_error = config_params.get("StopOnSampleError", "").lower() or "true" os.environ["StopOnSampleError"] = stop_on_error # Convert the stop_on_error flag to boolean for internal use in this function stop_on_error = stop_on_error == "true" # How many CPU cores can we use? max_cpu_cores = config_params.get("MaxCpuCores", None) if max_cpu_cores == "": max_cpu_cores = None if max_cpu_cores: try: max_cpu_cores = int(max_cpu_cores) if max_cpu_cores < 1: utils.fatal_error("Config file error in MaxCpuCores parameter: %s is less than one." % max_cpu_cores) except ValueError: utils.fatal_error("Config file error in MaxCpuCores parameter: %s is not a valid number." % max_cpu_cores) if job_queue_mgr is None: # workstation num_local_cpu_cores = psutil.cpu_count() max_cpu_cores = min(num_local_cpu_cores, max_cpu_cores) if max_cpu_cores else num_local_cpu_cores # How many CPU cores per process? if job_queue_mgr is None: # workstation cpu_cores_per_process = config_params.get("CpuCoresPerProcessOnWorkstation", None) if cpu_cores_per_process: try: cpu_cores_per_process = int(cpu_cores_per_process) if cpu_cores_per_process < 1: utils.fatal_error("Config file error in CpuCoresPerProcessOnWorkstation parameter: %s is less than one." % cpu_cores_per_process) except ValueError: utils.fatal_error("Config file error in CpuCoresPerProcessOnWorkstation parameter: %s is not a valid number." % cpu_cores_per_process) else: cpu_cores_per_process = min(num_local_cpu_cores, max_cpu_cores) else: # HPC cpu_cores_per_process = config_params.get("CpuCoresPerProcessOnHPC", None) if not cpu_cores_per_process: utils.fatal_error("Config file error. CpuCoresPerProcessOnHPC parameter must be set to a value.") else: try: cpu_cores_per_process = int(cpu_cores_per_process) if cpu_cores_per_process < 1: utils.fatal_error("Config file error in CpuCoresPerProcessOnHPC parameter: %s is less than one." % cpu_cores_per_process) except ValueError: utils.fatal_error("Config file error in CpuCoresPerProcessOnHPC parameter: %s is not a valid number." % cpu_cores_per_process) # Put the configuration parameters into the process environment variables os.environ["Bowtie2Build_ExtraParams"] = config_params.get("Bowtie2Build_ExtraParams", "") os.environ["SmaltIndex_ExtraParams"] = config_params.get("SmaltIndex_ExtraParams", "") os.environ["CreateSequenceDictionary_ExtraParams"] = config_params.get("CreateSequenceDictionary_ExtraParams", "") os.environ["SamtoolsFaidx_ExtraParams"] = config_params.get("SamtoolsFaidx_ExtraParams", "") os.environ["Bowtie2Align_ExtraParams"] = config_params.get("Bowtie2Align_ExtraParams", "") os.environ["SmaltAlign_ExtraParams"] = config_params.get("SmaltAlign_ExtraParams", "") os.environ["SamtoolsSamFilter_ExtraParams"] = config_params.get("SamtoolsSamFilter_ExtraParams", "") os.environ["SamtoolsSort_ExtraParams"] = config_params.get("SamtoolsSort_ExtraParams", "") os.environ["SamtoolsIndex_ExtraParams"] = config_params.get("SamtoolsIndex_ExtraParams", "") os.environ["RemoveDuplicateReads"] = config_params.get("RemoveDuplicateReads", "").lower() or "true" os.environ["PicardJvm_ExtraParams"] = config_params.get("PicardJvm_ExtraParams", "") os.environ["PicardMarkDuplicates_ExtraParams"] = config_params.get("PicardMarkDuplicates_ExtraParams", "") os.environ["EnableLocalRealignment"] = config_params.get("EnableLocalRealignment", "").lower() or "true" os.environ["GatkJvm_ExtraParams"] = config_params.get("GatkJvm_ExtraParams", "") os.environ["RealignerTargetCreator_ExtraParams"] = config_params.get("RealignerTargetCreator_ExtraParams", "") os.environ["IndelRealigner_ExtraParams"] = config_params.get("IndelRealigner_ExtraParams", "") os.environ["SamtoolsMpileup_ExtraParams"] = config_params.get("SamtoolsMpileup_ExtraParams", "") os.environ["VarscanMpileup2snp_ExtraParams"] = config_params.get("VarscanMpileup2snp_ExtraParams", "") os.environ["VarscanJvm_ExtraParams"] = config_params.get("VarscanJvm_ExtraParams", "") os.environ["FilterRegions_ExtraParams"] = config_params.get("FilterRegions_ExtraParams", "") os.environ["MergeSites_ExtraParams"] = config_params.get("MergeSites_ExtraParams", "") os.environ["CallConsensus_ExtraParams"] = config_params.get("CallConsensus_ExtraParams", "") os.environ["SnpMatrix_ExtraParams"] = config_params.get("SnpMatrix_ExtraParams", "") os.environ["BcftoolsMerge_ExtraParams"] = config_params.get("BcftoolsMerge_ExtraParams", "") os.environ["SnpReference_ExtraParams"] = config_params.get("SnpReference_ExtraParams", "") os.environ["MergeVcfs_ExtraParams"] = config_params.get("MergeVcfs_ExtraParams", "") os.environ["CollectMetrics_ExtraParams"] = config_params.get("CollectMetrics_ExtraParams", "") os.environ["CombineMetrics_ExtraParams"] = config_params.get("CombineMetrics_ExtraParams", "") # Verify the dependencies are available on the path print("Checking dependencies...") dependencies = ["cfsan_snp_pipeline", snp_pipeline_aligner, "java", "tabix", "bgzip", "bcftools"] found_all_dependencies = True for executable in dependencies: if not utils.which(executable): utils.report_error(executable + " is not on the path") found_all_dependencies = False if not utils.which("samtools"): utils.report_error("samtools is not on the path") found_all_dependencies = False else: version_str = utils.extract_version_str("SAMtools", "samtools 2>&1 > /dev/null") samtools_version = version_str.split()[-1] # just the number if samtools_version < "1.4": utils.report_error("The installed %s is not supported. Version 1.4 or higher is required." % version_str) found_all_dependencies = False jar_file_path = utils.find_path_in_path_list("VarScan", "CLASSPATH") if jar_file_path: stdout = command.run("java -jar " + jar_file_path + " 2>&1") if not jar_file_path or "error" in stdout.lower(): utils.report_error("CLASSPATH is not configured with the path to VarScan.jar") found_all_dependencies = False picard_required = os.environ["RemoveDuplicateReads"] == "true" or os.environ["EnableLocalRealignment"] == "true" if picard_required: jar_file_path = utils.find_path_in_path_list("picard", "CLASSPATH") if not jar_file_path: utils.report_error("CLASSPATH is not configured with the path to picard.jar") found_all_dependencies = False else: stdout = command.run("java -jar " + jar_file_path + " 2>&1") if stdout.lower().startswith("error"): utils.report_error(stdout) found_all_dependencies = False gatk_required = os.environ["EnableLocalRealignment"] == "true" if gatk_required: jar_file_path = utils.find_path_in_path_list("GenomeAnalysisTK", "CLASSPATH") if not jar_file_path: utils.report_error("CLASSPATH is not configured with the path to GenomeAnalysisTK.jar") found_all_dependencies = False else: stdout = command.run("java -jar " + jar_file_path + " --version 2>&1") if stdout.lower().startswith("error"): utils.report_error(stdout) found_all_dependencies = False else: stdout = command.run("java -jar " + jar_file_path + " -T IndelRealigner --version 2>&1") if "not a valid command" in stdout.lower() or "indelrealigner is no longer included" in stdout.lower(): utils.report_error("The installed GATK version does not support indel realignment. Try installing an older release prior to GATK v4.") found_all_dependencies = False elif "user error has occurred" in stdout.lower(): utils.report_error(stdout) found_all_dependencies = False if not found_all_dependencies: utils.fatal_error("Check the SNP Pipeline installation instructions here: http://snp-pipeline.readthedocs.org/en/latest/installation.html") else: print("OK") # Process the sample directory command line option # TODO: detect broken fastq symlinks if args.samplesDir: samples_parent_dir = args.samplesDir.rstrip('/') # strip trailing slash if not utils.verify_non_empty_directory("Samples directory", samples_parent_dir): sys.exit(1) # verify at least one of the subdirectories contains fastq files. dir_sizes = get_sorted_sample_dirs_fastq_sizes(samples_parent_dir) dir_sizes = [(size, path) for size, path in dir_sizes if size > 0] if len(dir_sizes) == 0: utils.fatal_error("Samples directory %s does not contain subdirectories with fastq files." % samples_parent_dir) sample_dirs_file = os.path.join(work_dir, "sampleDirectories.txt") persist_sorted_sample_dirs_file(samples_parent_dir, sample_dirs_file) # Process the file of sample directories command line option # TODO: detect broken fastq symlinks if args.samplesFile: sample_dirs_file = args.samplesFile if not os.path.isfile(sample_dirs_file): utils.fatal_error("Error: the file of samples directories, %s, does not exist." % sample_dirs_file) if os.path.getsize(sample_dirs_file) == 0: utils.fatal_error("Error: the file of samples directories, %s, is empty." % sample_dirs_file) rewrite_cleansed_file_of_sample_dirs(sample_dirs_file, os.path.join(work_dir, "sampleDirectories.txt")) sample_dirs_file = os.path.join(work_dir, "sampleDirectories.txt") validate_file_of_sample_dirs(sample_dirs_file) with open(sample_dirs_file) as f: sample_dirs_list = f.read().splitlines() sample_count = len(sample_dirs_list) # -------------------------------------------------------- if job_queue_mgr is None: progress("Step 1 - Prep work") else: print("Step 1 - Prep work") # -------------------------------------------------------- # Mirror the input reference and samples if requested # TODO: make this a pure python solution if args.mirror: if args.mirror == "soft": # soft link, subsequent freshness checks use the timestamp of original file, not the soft link mirror_flag = " -s " elif args.mirror == "hard": # hard link, automatically preserves attributes of the original file mirror_flag = " -l " else: # regular copy, -p explicitly preserves attributes of the original file mirror_flag = " -p " # flush stdout to keep the unbuffered stderr in chronological order with stdout sys.stdout.flush() # Mirror/link the reference work_reference_dir = os.path.join(work_dir, "reference") utils.mkdir_p(work_reference_dir) src_reference_file = os.path.abspath(reference_file_path) cmd = "cp -v -u -f" + mirror_flag + src_reference_file + ' ' + work_reference_dir subprocess.check_call(cmd, shell=True) # since we mirrored the reference, we need to update our reference location reference_file_path = os.path.join(work_reference_dir, reference_file_name) # Mirror/link the samples work_samples_parent_dir = os.path.join(work_dir, "samples") for directory in sample_dirs_list: basedir = os.path.basename(directory) work_sample_dir = os.path.join(work_samples_parent_dir, basedir) utils.mkdir_p(work_sample_dir) src_sample_dir = os.path.abspath(directory) # copy without stderr message and without exit error code because the fastq or fq files might not exist cmd = "cp -r -v -u -f" + mirror_flag + src_sample_dir + "/*.fastq* " + work_sample_dir + " 2> /dev/null || true" subprocess.check_call(cmd, shell=True) cmd = "cp -r -v -u -f" + mirror_flag + src_sample_dir + "/*.fq* " + work_sample_dir + " 2> /dev/null || true" subprocess.check_call(cmd, shell=True) # since we mirrored the samples, we need to update our sorted list of samples sample_dirs_file = os.path.join(work_dir, "sampleDirectories.txt") persist_sorted_sample_dirs_file(work_samples_parent_dir, sample_dirs_file) # refresh the list of sample dirs -- now in sorted order with open(sample_dirs_file) as f: sample_dirs_list = f.read().splitlines() # get the *.fastq or *.fq files in each sample directory, possibly compresessed, on one line per sample, ready to feed to bowtie sample_full_path_names_file = os.path.join(work_dir, "sampleFullPathNames.txt") with open(sample_full_path_names_file, 'w') as f: for directory in sample_dirs_list: file_list = fastq.list_fastq_files(directory) print(' '.join(file_list), file=f) # Initialize the job runner if job_queue_mgr is None: runner = JobRunner("local", exception_handler=handle_exception, verbose=args.verbose >= 4) elif job_queue_mgr == "grid": strip_job_array_suffix = config_params.get("GridEngine_StripJobArraySuffix", "true").lower() qsub_extra_params = config_params.get("GridEngine_QsubExtraParams") runner = JobRunner(job_queue_mgr, strip_job_array_suffix == "true", qsub_extra_params=qsub_extra_params, verbose=args.verbose >= 4) else: strip_job_array_suffix = config_params.get("Torque_StripJobArraySuffix", "false").lower() qsub_extra_params = config_params.get("Torque_QsubExtraParams") runner = JobRunner(job_queue_mgr, strip_job_array_suffix == "true", qsub_extra_params=qsub_extra_params, verbose=args.verbose >= 4) progress("Step 2 - Index the reference") log_file = os.path.join(log_dir, "indexRef.log") command_line = "cfsan_snp_pipeline index_ref" + force_flag + reference_file_path job_id_index_ref = runner.run(command_line, "indexRef", log_file) progress("Step 3 - Map the sample reads to the reference") # Parse the user-specified aligner parameters to find the number of CPU cores requested, for example, "-p 16" or "-n 16" # Set the default number of CPU cores if the user did not configure a value. if snp_pipeline_aligner == "smalt": extra_params_env_var = "SmaltAlign_ExtraParams" threads_option = "-n" else: extra_params_env_var = "Bowtie2Align_ExtraParams" threads_option = "-p" aligner_max_processes, aligner_threads_per_process = utils.configure_process_threads(extra_params_env_var, threads_option, cpu_cores_per_process, max_cpu_cores) samfilter_max_processes, samfilter_threads_per_process = utils.configure_process_threads("SamtoolsSamFilter_ExtraParams", ["-@", "--threads"], cpu_cores_per_process, max_cpu_cores) samsort_max_processes, samsort_threads_per_process = utils.configure_process_threads("SamtoolsSort_ExtraParams", ["-@", "--threads"], cpu_cores_per_process, max_cpu_cores) samindex_max_processes, samindex_threads_per_process = utils.configure_process_threads("SamtoolsIndex_ExtraParams", ["-@"], cpu_cores_per_process, max_cpu_cores) realigner_max_processes, realigner_threads_per_process = utils.configure_process_threads("RealignerTargetCreator_ExtraParams", ["-nt", "--num_threads"], cpu_cores_per_process, max_cpu_cores) # There are multiple processes within map_reads, each with multiple threads. # The CPU allocation must be enough for the process needing the largest number of threads. max_processes_list = [aligner_max_processes, samfilter_max_processes, samsort_max_processes, samindex_max_processes, realigner_max_processes] if all([i is None for i in max_processes_list]): max_processes = None else: max_processes = min([i for i in max_processes_list if i is not None]) threads_per_process = max(aligner_threads_per_process, samfilter_threads_per_process, samsort_threads_per_process, samindex_threads_per_process, realigner_threads_per_process) parallel_environment = config_params.get("GridEngine_PEname", None) log_file = os.path.join(log_dir, "mapReads.log") command_line = "cfsan_snp_pipeline map_reads --threads " + str(threads_per_process) + force_flag + reference_file_path + " {1} {2}" job_id_map_reads = runner.run_array(command_line, "mapReads", log_file, sample_full_path_names_file, max_processes=max_processes, wait_for=[job_id_index_ref], threads=threads_per_process, parallel_environment=parallel_environment) progress("Step 4 - Find sites with SNPs in each sample") if job_queue_mgr in ["grid", "torque"]: time.sleep(1.0 + float(sample_count) / 150) # workaround torque bug when submitting two large consecutive array jobs, potential bug for grid log_file = os.path.join(log_dir, "callSites.log") command_line = "cfsan_snp_pipeline call_sites" + force_flag + reference_file_path + " {1}" job_id_call_sites = runner.run_array(command_line, "callSites", log_file, sample_dirs_file, max_processes=max_cpu_cores, wait_for_array=[job_id_map_reads], slot_dependency=True) progress("Step 5 - Filter abnormal SNP regions") log_file = os.path.join(log_dir, "filterRegions.log") extra_params = os.environ.get("FilterRegions_ExtraParams", "") command_line = "cfsan_snp_pipeline filter_regions" + force_flag + "-n var.flt.vcf " + sample_dirs_file + ' ' + reference_file_path + ' ' + extra_params job_id_filter_regions = runner.run(command_line, "filterRegions", log_file, wait_for_array=[job_id_call_sites]) # Starting from here, there are 2 threads: # Thread X.1: the thread processing the original VCF files and corresponding downstream results # Thread X.2: the thread processing the preserved VCF files and corresponding downstream results progress("Step 6.1 - Merge the SNP sites across all samples into the SNP list file") # The mergeSites process creates the filtered list of sample directories. It is the list of samples not having excessive snps. # When running on a workstation, the file exists at this point during the script execution, but on grid or torque, it has not yet been created. However, # we know the path to the file regardless of whether it exists yet. filtered_sample_dirs_file = sample_dirs_file + ".OrigVCF.filtered" # touch $filtered_sample_dirs_file # TODO: why was this touch here in the old run_snp_pipeline.sh script? log_file = os.path.join(log_dir, "mergeSites.log") output_file = os.path.join(work_dir, "snplist.txt") extra_params = os.environ.get("MergeSites_ExtraParams", "") command_line = "cfsan_snp_pipeline merge_sites" + force_flag + "-n var.flt.vcf -o " + output_file + ' ' + extra_params + ' ' + sample_dirs_file + ' ' + filtered_sample_dirs_file job_id_merge_sites = runner.run(command_line, "mergeSites", log_file, wait_for=[job_id_filter_regions]) progress("Step 6.2 - Merge the SNP sites across all samples into the SNP list file") # Create another copy of sample directories file, for the thread processing preserved snp files. filtered_sample_dirs_file2 = sample_dirs_file + ".PresVCF.filtered" # touch $filtered_sample_dirs_file2 # TODO: why was this touch here in the old run_snp_pipeline.sh script? log_file = os.path.join(log_dir, "mergeSites_preserved.log") output_file = os.path.join(work_dir, "snplist_preserved.txt") extra_params = os.environ.get("MergeSites_ExtraParams", "") command_line = "cfsan_snp_pipeline merge_sites" + force_flag + "-n var.flt_preserved.vcf -o " + output_file + ' ' + extra_params + ' ' + sample_dirs_file + ' ' + filtered_sample_dirs_file2 job_id_merge_sites2 = runner.run(command_line, "mergeSites_preserved", log_file, wait_for=[job_id_filter_regions]) progress("Step 7.1 - Call the consensus SNPs for each sample") log_file = os.path.join(log_dir, "callConsensus.log") list_file = os.path.join(work_dir, "snplist.txt") output_file = "{1}/consensus.fasta" extra_params = os.environ.get("CallConsensus_ExtraParams", "") command_line = "cfsan_snp_pipeline call_consensus" + force_flag + "-l " + list_file + " -o " + output_file + " --vcfRefName " + reference_file_name + ' ' + extra_params + " --vcfFileName consensus.vcf {1}/reads.all.pileup" job_id_call_consensus = runner.run_array(command_line, "callConsensus", log_file, sample_dirs_file, max_processes=max_cpu_cores, wait_for=[job_id_merge_sites]) progress("Step 7.2 - Call the consensus SNPs for each sample") log_file = os.path.join(log_dir, "callConsensus_preserved.log") list_file = os.path.join(work_dir, "snplist_preserved.txt") output_file = "{1}/consensus_preserved.fasta" extra_params = os.environ.get("CallConsensus_ExtraParams", "") command_line = "cfsan_snp_pipeline call_consensus" + force_flag + "-l " + list_file + " -o " + output_file + " -e {1}/var.flt_removed.vcf --vcfRefName " + reference_file_name + ' ' + extra_params + " --vcfFileName consensus_preserved.vcf {1}/reads.all.pileup" job_id_call_consensus2 = runner.run_array(command_line, "callConsensus_preserved", log_file, sample_dirs_file, max_processes=max_cpu_cores, wait_for=[job_id_merge_sites2]) progress("Step 8.1 - Create the SNP matrix") log_file = os.path.join(log_dir, "snpMatrix.log") output_file = os.path.join(work_dir, "snpma.fasta") extra_params = os.environ.get("SnpMatrix_ExtraParams", "") command_line = "cfsan_snp_pipeline snp_matrix" + force_flag + "-c consensus.fasta -o " + output_file + ' ' + extra_params + ' ' + filtered_sample_dirs_file job_id_snp_matrix = runner.run(command_line, "snpMatrix", log_file, wait_for_array=[job_id_call_consensus]) progress("Step 8.2 - Create the SNP matrix") log_file = os.path.join(log_dir, "snpMatrix_preserved.log") output_file = os.path.join(work_dir, "snpma_preserved.fasta") extra_params = os.environ.get("SnpMatrix_ExtraParams", "") command_line = "cfsan_snp_pipeline snp_matrix" + force_flag + "-c consensus_preserved.fasta -o " + output_file + ' ' + extra_params + ' ' + filtered_sample_dirs_file2 job_id_snp_matrix2 = runner.run(command_line, "snpMatrix_preserved", log_file, wait_for_array=[job_id_call_consensus2]) progress("Step 9.1 - Create the reference sequence at SNP sites") log_file = os.path.join(log_dir, "snpReference.log") list_file = os.path.join(work_dir, "snplist.txt") output_file = os.path.join(work_dir, "referenceSNP.fasta") extra_params = os.environ.get("SnpReference_ExtraParams", "") command_line = "cfsan_snp_pipeline snp_reference" + force_flag + "-l " + list_file + " -o " + output_file + ' ' + extra_params + ' ' + reference_file_path job_id_snp_reference = runner.run(command_line, "snpReference", log_file, wait_for_array=[job_id_call_consensus]) progress("Step 9.2 - Create the reference sequence at SNP sites") log_file = os.path.join(log_dir, "snpReference_preserved.log") list_file = os.path.join(work_dir, "snplist_preserved.txt") output_file = os.path.join(work_dir, "referenceSNP_preserved.fasta") extra_params = os.environ.get("SnpReference_ExtraParams", "") command_line = "cfsan_snp_pipeline snp_reference" + force_flag + "-l " + list_file + " -o " + output_file + ' ' + extra_params + ' ' + reference_file_path job_id_snp_reference2 = runner.run(command_line, "snpReference_preserved", log_file, wait_for_array=[job_id_call_consensus2]) progress("Step 10.1 - Merge sample VCFs to create the multi-VCF file") if "--vcfFileName" in os.environ.get("CallConsensus_ExtraParams", ""): log_file = os.path.join(log_dir, "mergeVcfs.log") output_file = os.path.join(work_dir, "snpma.vcf") extra_params = os.environ.get("MergeVcfs_ExtraParams", "") command_line = "cfsan_snp_pipeline merge_vcfs" + force_flag + "-o " + output_file + ' ' + extra_params + ' ' + filtered_sample_dirs_file job_id_merge_vcfs = runner.run(command_line, "mergeVcfs", log_file, wait_for_array=[job_id_call_consensus]) else: print("Skipped per CallConsensus_ExtraParams configuration") progress("Step 10.2 - Merge sample VCFs to create the multi-VCF file") if "--vcfFileName" in os.environ.get("CallConsensus_ExtraParams", ""): log_file = os.path.join(log_dir, "mergeVcfs_preserved.log") output_file = os.path.join(work_dir, "snpma_preserved.vcf") extra_params = os.environ.get("MergeVcfs_ExtraParams", "") command_line = "cfsan_snp_pipeline merge_vcfs" + force_flag + "-n consensus_preserved.vcf -o " + output_file + ' ' + extra_params + ' ' + filtered_sample_dirs_file2 job_id_merge_vcfs2 = runner.run(command_line, "mergeVcfs_preserved", log_file, wait_for_array=[job_id_call_consensus2]) else: print("Skipped per CallConsensus_ExtraParams configuration") progress("Step 11.1 - Calculate SNP distance matrix") log_file = os.path.join(log_dir, "distance.log") input_file = os.path.join(work_dir, "snpma.fasta") pair_output_file = os.path.join(work_dir, "snp_distance_pairwise.tsv") matrix_output_file = os.path.join(work_dir, "snp_distance_matrix.tsv") command_line = "cfsan_snp_pipeline distance" + force_flag + "-p " + pair_output_file + " -m " + matrix_output_file + ' ' + input_file job_id_distance = runner.run(command_line, "distance", log_file, wait_for=[job_id_snp_matrix]) progress("Step 11.2 - Calculate SNP distance matrix") log_file = os.path.join(log_dir, "distance_preserved.log") input_file = os.path.join(work_dir, "snpma_preserved.fasta") pair_output_file = os.path.join(work_dir, "snp_distance_pairwise_preserved.tsv") matrix_output_file = os.path.join(work_dir, "snp_distance_matrix_preserved.tsv") command_line = "cfsan_snp_pipeline distance" + force_flag + "-p " + pair_output_file + " -m " + matrix_output_file + ' ' + input_file job_id_distance2 = runner.run(command_line, "distance_preserved", log_file, wait_for=[job_id_snp_matrix2]) progress("Step 12 - Collect metrics for each sample") log_file = os.path.join(log_dir, "collectMetrics.log") output_file = "{1}/metrics" extra_params = os.environ.get("CollectMetrics_ExtraParams", "") command_line = "cfsan_snp_pipeline collect_metrics" + force_flag + "-o " + output_file + ' ' + extra_params + " {1} " + reference_file_path job_id_collect_metrics = runner.run_array(command_line, "collectMetrics", log_file, sample_dirs_file, max_processes=max_cpu_cores, wait_for_array=[job_id_call_consensus, job_id_call_consensus2], slot_dependency=True) progress("Step 13 - Combine the metrics across all samples into the metrics table") log_file = os.path.join(log_dir, "combineMetrics.log") output_file = os.path.join(work_dir, "metrics.tsv") extra_params = os.environ.get("CombineMetrics_ExtraParams", "") command_line = "cfsan_snp_pipeline combine_metrics" + force_flag + "-n metrics -o " + output_file + ' ' + extra_params + ' ' + sample_dirs_file combine_metrics_job_id = runner.run(command_line, "combineMetrics", log_file, wait_for_array=[job_id_collect_metrics]) # Step 14 - Notify user of any non-fatal errors accumulated during processing if os.path.isfile(error_output_file) and os.path.getsize(error_output_file) > 0 and not stop_on_error: print("\nThere were errors processing some samples.\nSee the log file %s for a summary of errors." % error_output_file, file=sys.stderr) # Exit here to prevent showing the "cfsan_snp_pipeline run finished" message. The jobs are queued, not finished yet. if job_queue_mgr is not None: # HPC sys.exit(0) else: end_time = time.time() elapsed_time = end_time - start_time print("Elapsed time =", elapsed_time)
def run(args): """Run all the steps of the snp pipeline in th correct order. Parameters ---------- args : Namespace referenceFile : str Relative or absolute path to the reference fasta file forceFlag : bool Force processing even when result files already exist and are newer than inputs mirror : str Mode to create a mirror copy of the reference directory and all the sample directories. Possible values: {soft, hard, copy} configFile : str Relative or absolute path to a configuration file for overriding defaults and defining extra parameters for the tools and scripts within the pipeline. jobQueueMgr : str Job queue manager for remote parallel job execution in an HPC environment. Currently "torque" and "grid" are supported. If not specified, the pipeline will execute locally. workDir : str Output directory for the result files. samplesDir : str Relative or absolute path to the parent directory of all the sample directories. samplesFile : str Relative or absolute path to a file listing all of the sample directories. purge : bool Purge the intermediate output files when the pipeline completes successfully. """ global log_dir global job_queue_mgr start_time = time.time() # Where are we running: grid, torque, or None (local) job_queue_mgr = args.jobQueueMgr # Erase any left-over error log environment variable from a previous run os.environ.pop("errorOutputFile", None) # the 2nd arg avoids an exception when not in dict # Handle output working directory. Create the directory if it does not exist. # Any errors creating the work_dir will not be logged to the error log because # the error log belongs in the work_dir. work_dir = args.workDir try: utils.mkdir_p(work_dir) except OSError as exc: utils.fatal_error("Error: could not create the output directory %s" % work_dir) if not utils.is_directory_writeable(work_dir): utils.fatal_error("Error: output directory % is not writable." % work_dir) # The error log is in the main workdir error_output_file = os.path.join(work_dir, "error.log") os.environ["errorOutputFile"] = error_output_file # TODO: copy old error log to old logs directory, because otherwise it will be removed and lost forever if os.path.isfile(error_output_file): os.remove(error_output_file) # Validate reference fasta file reference_file_path = args.referenceFile if not os.path.isfile(reference_file_path): utils.fatal_error("Error: reference file %s does not exist." % reference_file_path) if os.path.getsize(reference_file_path) == 0: utils.fatal_error("Error: reference file %s is empty." % reference_file_path) reference_file_name = os.path.basename(reference_file_path) # Force rebuild flag is passed to all the subtask commands below force_flag = " -f " if args.forceFlag else " " # Create the logs directory with name like "logs-20170215.144253" run_time_stamp = time.strftime('%Y%m%d.%H%M%S', time.localtime()) log_dir = os.path.join(work_dir, "logs-" + run_time_stamp) try: utils.mkdir_p(log_dir) except OSError as exc: utils.fatal_error("Error: could not create the logs directory %s" % log_dir) if not utils.is_directory_writeable(work_dir): utils.fatal_error("Error: logs directory % is not writable." % log_dir) # Handle configuration file, use the specified file, or create a default file if args.configFile: config_file_path = args.configFile if not os.path.isfile(config_file_path): utils.fatal_error("Error: configuration file %s does not exist." % config_file_path) if os.path.getsize(config_file_path) == 0: utils.fatal_error("Error: configuration file %s is empty." % config_file_path) shutil.copy2(config_file_path, log_dir) # copy2 tries to preserve timestamps config_params = utils.read_properties(config_file_path, recognize_vars=True) validate_properties(config_params) else: command.run("cfsan_snp_pipeline data configurationFile " + log_dir, outfile=sys.stdout) config_file_path = os.path.join(log_dir, "snppipeline.conf") config_params = utils.read_properties(config_file_path, recognize_vars=True) # Validate the configured aligner choice snp_pipeline_aligner = config_params.get("SnpPipeline_Aligner", "").lower() or "bowtie2" if snp_pipeline_aligner not in ["bowtie2", "smalt"]: utils.fatal_error( "Config file error in SnpPipeline_Aligner parameter: only bowtie2 and smalt aligners are supported." ) os.environ["SnpPipeline_Aligner"] = snp_pipeline_aligner # Stop the pipeline by default upon single sample errors if not configured either way # The environment variable is used by called processes stop_on_error = config_params.get("StopOnSampleError", "").lower() or "true" os.environ["StopOnSampleError"] = stop_on_error # Convert the stop_on_error flag to boolean for internal use in this function stop_on_error = stop_on_error == "true" # How many CPU cores can we use? max_cpu_cores = config_params.get("MaxCpuCores", None) if max_cpu_cores == "": max_cpu_cores = None if max_cpu_cores: try: max_cpu_cores = int(max_cpu_cores) if max_cpu_cores < 1: utils.fatal_error( "Config file error in MaxCpuCores parameter: %s is less than one." % max_cpu_cores) except ValueError: utils.fatal_error( "Config file error in MaxCpuCores parameter: %s is not a valid number." % max_cpu_cores) if job_queue_mgr is None: # workstation num_local_cpu_cores = psutil.cpu_count() max_cpu_cores = min( num_local_cpu_cores, max_cpu_cores) if max_cpu_cores else num_local_cpu_cores # How many CPU cores per process? if job_queue_mgr is None: # workstation cpu_cores_per_process = config_params.get( "CpuCoresPerProcessOnWorkstation", None) if cpu_cores_per_process: try: cpu_cores_per_process = int(cpu_cores_per_process) if cpu_cores_per_process < 1: utils.fatal_error( "Config file error in CpuCoresPerProcessOnWorkstation parameter: %s is less than one." % cpu_cores_per_process) except ValueError: utils.fatal_error( "Config file error in CpuCoresPerProcessOnWorkstation parameter: %s is not a valid number." % cpu_cores_per_process) else: cpu_cores_per_process = min(num_local_cpu_cores, max_cpu_cores) else: # HPC cpu_cores_per_process = config_params.get("CpuCoresPerProcessOnHPC", None) if not cpu_cores_per_process: utils.fatal_error( "Config file error. CpuCoresPerProcessOnHPC parameter must be set to a value." ) else: try: cpu_cores_per_process = int(cpu_cores_per_process) if cpu_cores_per_process < 1: utils.fatal_error( "Config file error in CpuCoresPerProcessOnHPC parameter: %s is less than one." % cpu_cores_per_process) except ValueError: utils.fatal_error( "Config file error in CpuCoresPerProcessOnHPC parameter: %s is not a valid number." % cpu_cores_per_process) # Put the configuration parameters into the process environment variables os.environ["Bowtie2Build_ExtraParams"] = config_params.get( "Bowtie2Build_ExtraParams", "") os.environ["SmaltIndex_ExtraParams"] = config_params.get( "SmaltIndex_ExtraParams", "") os.environ["CreateSequenceDictionary_ExtraParams"] = config_params.get( "CreateSequenceDictionary_ExtraParams", "") os.environ["SamtoolsFaidx_ExtraParams"] = config_params.get( "SamtoolsFaidx_ExtraParams", "") os.environ["Bowtie2Align_ExtraParams"] = config_params.get( "Bowtie2Align_ExtraParams", "") os.environ["SmaltAlign_ExtraParams"] = config_params.get( "SmaltAlign_ExtraParams", "") os.environ["SamtoolsSamFilter_ExtraParams"] = config_params.get( "SamtoolsSamFilter_ExtraParams", "") os.environ["SamtoolsSort_ExtraParams"] = config_params.get( "SamtoolsSort_ExtraParams", "") os.environ["SamtoolsIndex_ExtraParams"] = config_params.get( "SamtoolsIndex_ExtraParams", "") os.environ["RemoveDuplicateReads"] = config_params.get( "RemoveDuplicateReads", "").lower() or "true" os.environ["PicardJvm_ExtraParams"] = config_params.get( "PicardJvm_ExtraParams", "") os.environ["PicardMarkDuplicates_ExtraParams"] = config_params.get( "PicardMarkDuplicates_ExtraParams", "") os.environ["EnableLocalRealignment"] = config_params.get( "EnableLocalRealignment", "").lower() or "true" os.environ["GatkJvm_ExtraParams"] = config_params.get( "GatkJvm_ExtraParams", "") os.environ["RealignerTargetCreator_ExtraParams"] = config_params.get( "RealignerTargetCreator_ExtraParams", "") os.environ["IndelRealigner_ExtraParams"] = config_params.get( "IndelRealigner_ExtraParams", "") os.environ["SamtoolsMpileup_ExtraParams"] = config_params.get( "SamtoolsMpileup_ExtraParams", "") os.environ["VarscanMpileup2snp_ExtraParams"] = config_params.get( "VarscanMpileup2snp_ExtraParams", "") os.environ["VarscanJvm_ExtraParams"] = config_params.get( "VarscanJvm_ExtraParams", "") os.environ["FilterRegions_ExtraParams"] = config_params.get( "FilterRegions_ExtraParams", "") os.environ["MergeSites_ExtraParams"] = config_params.get( "MergeSites_ExtraParams", "") os.environ["CallConsensus_ExtraParams"] = config_params.get( "CallConsensus_ExtraParams", "") os.environ["SnpMatrix_ExtraParams"] = config_params.get( "SnpMatrix_ExtraParams", "") os.environ["BcftoolsMerge_ExtraParams"] = config_params.get( "BcftoolsMerge_ExtraParams", "") os.environ["SnpReference_ExtraParams"] = config_params.get( "SnpReference_ExtraParams", "") os.environ["MergeVcfs_ExtraParams"] = config_params.get( "MergeVcfs_ExtraParams", "") os.environ["CollectMetrics_ExtraParams"] = config_params.get( "CollectMetrics_ExtraParams", "") os.environ["CombineMetrics_ExtraParams"] = config_params.get( "CombineMetrics_ExtraParams", "") # Verify the dependencies are available on the path print("Checking dependencies...") dependencies = [ "cfsan_snp_pipeline", snp_pipeline_aligner, "java", "tabix", "bgzip", "bcftools" ] found_all_dependencies = True for executable in dependencies: if not utils.which(executable): utils.report_error(executable + " is not on the path") found_all_dependencies = False if not utils.which("samtools"): utils.report_error("samtools is not on the path") found_all_dependencies = False else: version_str = utils.extract_version_str("SAMtools", "samtools 2>&1 > /dev/null") samtools_version = version_str.split()[-1] # just the number if samtools_version < "1.4": utils.report_error( "The installed %s is not supported. Version 1.4 or higher is required." % version_str) found_all_dependencies = False jar_file_path = utils.find_path_in_path_list("VarScan", "CLASSPATH") if jar_file_path: stdout = command.run("java -jar " + jar_file_path + " 2>&1") if not jar_file_path or "error" in stdout.lower(): utils.report_error( "CLASSPATH is not configured with the path to VarScan.jar") found_all_dependencies = False picard_required = os.environ[ "RemoveDuplicateReads"] == "true" or os.environ[ "EnableLocalRealignment"] == "true" if picard_required: jar_file_path = utils.find_path_in_path_list("picard", "CLASSPATH") if not jar_file_path: utils.report_error( "CLASSPATH is not configured with the path to picard.jar") found_all_dependencies = False else: stdout = command.run("java -jar " + jar_file_path + " 2>&1") if stdout.lower().startswith("error"): utils.report_error(stdout) found_all_dependencies = False gatk_required = os.environ["EnableLocalRealignment"] == "true" if gatk_required: jar_file_path = utils.find_path_in_path_list("GenomeAnalysisTK", "CLASSPATH") if not jar_file_path: utils.report_error( "CLASSPATH is not configured with the path to GenomeAnalysisTK.jar" ) found_all_dependencies = False else: stdout = command.run("java -jar " + jar_file_path + " --version 2>&1") if stdout.lower().startswith("error"): utils.report_error(stdout) found_all_dependencies = False else: stdout = command.run("java -jar " + jar_file_path + " -T IndelRealigner --version 2>&1") if "not a valid command" in stdout.lower( ) or "indelrealigner is no longer included" in stdout.lower(): utils.report_error( "The installed GATK version does not support indel realignment. Try installing an older release prior to GATK v4." ) found_all_dependencies = False elif "user error has occurred" in stdout.lower(): utils.report_error(stdout) found_all_dependencies = False if not found_all_dependencies: utils.fatal_error( "Check the SNP Pipeline installation instructions here: http://snp-pipeline.readthedocs.org/en/latest/installation.html" ) else: print("OK") # Process the sample directory command line option # TODO: detect broken fastq symlinks if args.samplesDir: samples_parent_dir = args.samplesDir.rstrip( '/') # strip trailing slash if not utils.verify_non_empty_directory("Samples directory", samples_parent_dir): sys.exit(1) # verify at least one of the subdirectories contains fastq files. dir_sizes = get_sorted_sample_dirs_fastq_sizes(samples_parent_dir) dir_sizes = [(size, path) for size, path in dir_sizes if size > 0] if len(dir_sizes) == 0: utils.fatal_error( "Samples directory %s does not contain subdirectories with fastq files." % samples_parent_dir) sample_dirs_file = os.path.join(work_dir, "sampleDirectories.txt") persist_sorted_sample_dirs_file(samples_parent_dir, sample_dirs_file) # Process the file of sample directories command line option # TODO: detect broken fastq symlinks if args.samplesFile: sample_dirs_file = args.samplesFile if not os.path.isfile(sample_dirs_file): utils.fatal_error( "Error: the file of samples directories, %s, does not exist." % sample_dirs_file) if os.path.getsize(sample_dirs_file) == 0: utils.fatal_error( "Error: the file of samples directories, %s, is empty." % sample_dirs_file) rewrite_cleansed_file_of_sample_dirs( sample_dirs_file, os.path.join(work_dir, "sampleDirectories.txt")) sample_dirs_file = os.path.join(work_dir, "sampleDirectories.txt") validate_file_of_sample_dirs(sample_dirs_file) with open(sample_dirs_file) as f: sample_dirs_list = f.read().splitlines() sample_count = len(sample_dirs_list) # -------------------------------------------------------- if job_queue_mgr is None: progress("Step 1 - Prep work") else: print("Step 1 - Prep work") # -------------------------------------------------------- # Mirror the input reference and samples if requested # TODO: make this a pure python solution if args.mirror: if args.mirror == "soft": # soft link, subsequent freshness checks use the timestamp of original file, not the soft link mirror_flag = " -s " elif args.mirror == "hard": # hard link, automatically preserves attributes of the original file mirror_flag = " -l " else: # regular copy, -p explicitly preserves attributes of the original file mirror_flag = " -p " # flush stdout to keep the unbuffered stderr in chronological order with stdout sys.stdout.flush() # Mirror/link the reference work_reference_dir = os.path.join(work_dir, "reference") utils.mkdir_p(work_reference_dir) src_reference_file = os.path.abspath(reference_file_path) cmd = "cp -v -u -f" + mirror_flag + src_reference_file + ' ' + work_reference_dir subprocess.check_call(cmd, shell=True) # since we mirrored the reference, we need to update our reference location reference_file_path = os.path.join(work_reference_dir, reference_file_name) # Mirror/link the samples work_samples_parent_dir = os.path.join(work_dir, "samples") for directory in sample_dirs_list: basedir = os.path.basename(directory) work_sample_dir = os.path.join(work_samples_parent_dir, basedir) utils.mkdir_p(work_sample_dir) src_sample_dir = os.path.abspath(directory) # copy without stderr message and without exit error code because the fastq or fq files might not exist cmd = "cp -r -v -u -f" + mirror_flag + src_sample_dir + "/*.fastq* " + work_sample_dir + " 2> /dev/null || true" subprocess.check_call(cmd, shell=True) cmd = "cp -r -v -u -f" + mirror_flag + src_sample_dir + "/*.fq* " + work_sample_dir + " 2> /dev/null || true" subprocess.check_call(cmd, shell=True) # since we mirrored the samples, we need to update our sorted list of samples sample_dirs_file = os.path.join(work_dir, "sampleDirectories.txt") persist_sorted_sample_dirs_file(work_samples_parent_dir, sample_dirs_file) # refresh the list of sample dirs -- now in sorted order with open(sample_dirs_file) as f: sample_dirs_list = f.read().splitlines() # get the *.fastq or *.fq files in each sample directory, possibly compresessed, on one line per sample, ready to feed to bowtie sample_full_path_names_file = os.path.join(work_dir, "sampleFullPathNames.txt") with open(sample_full_path_names_file, 'w') as f: for directory in sample_dirs_list: file_list = fastq.list_fastq_files(directory) print(' '.join(file_list), file=f) # Initialize the job runner if job_queue_mgr is None: runner = JobRunner("local", exception_handler=handle_exception, verbose=args.verbose >= 4) elif job_queue_mgr == "grid": strip_job_array_suffix = config_params.get( "GridEngine_StripJobArraySuffix", "true").lower() qsub_extra_params = config_params.get("GridEngine_QsubExtraParams") runner = JobRunner(job_queue_mgr, strip_job_array_suffix == "true", qsub_extra_params=qsub_extra_params, verbose=args.verbose >= 4) else: strip_job_array_suffix = config_params.get( "Torque_StripJobArraySuffix", "false").lower() qsub_extra_params = config_params.get("Torque_QsubExtraParams") runner = JobRunner(job_queue_mgr, strip_job_array_suffix == "true", qsub_extra_params=qsub_extra_params, verbose=args.verbose >= 4) progress("Step 2 - Index the reference") log_file = os.path.join(log_dir, "indexRef.log") command_line = "cfsan_snp_pipeline index_ref" + force_flag + reference_file_path job_id_index_ref = runner.run(command_line, "indexRef", log_file) progress("Step 3 - Map the sample reads to the reference") # Parse the user-specified aligner parameters to find the number of CPU cores requested, for example, "-p 16" or "-n 16" # Set the default number of CPU cores if the user did not configure a value. if snp_pipeline_aligner == "smalt": extra_params_env_var = "SmaltAlign_ExtraParams" threads_option = "-n" else: extra_params_env_var = "Bowtie2Align_ExtraParams" threads_option = "-p" aligner_max_processes, aligner_threads_per_process = utils.configure_process_threads( extra_params_env_var, threads_option, cpu_cores_per_process, max_cpu_cores) samfilter_max_processes, samfilter_threads_per_process = utils.configure_process_threads( "SamtoolsSamFilter_ExtraParams", ["-@", "--threads"], cpu_cores_per_process, max_cpu_cores) samsort_max_processes, samsort_threads_per_process = utils.configure_process_threads( "SamtoolsSort_ExtraParams", ["-@", "--threads"], cpu_cores_per_process, max_cpu_cores) samindex_max_processes, samindex_threads_per_process = utils.configure_process_threads( "SamtoolsIndex_ExtraParams", ["-@"], cpu_cores_per_process, max_cpu_cores) realigner_max_processes, realigner_threads_per_process = utils.configure_process_threads( "RealignerTargetCreator_ExtraParams", ["-nt", "--num_threads"], cpu_cores_per_process, max_cpu_cores) # There are multiple processes within map_reads, each with multiple threads. # The CPU allocation must be enough for the process needing the largest number of threads. max_processes_list = [ aligner_max_processes, samfilter_max_processes, samsort_max_processes, samindex_max_processes, realigner_max_processes ] if all([i is None for i in max_processes_list]): max_processes = None else: max_processes = min([i for i in max_processes_list if i is not None]) threads_per_process = max(aligner_threads_per_process, samfilter_threads_per_process, samsort_threads_per_process, samindex_threads_per_process, realigner_threads_per_process) parallel_environment = config_params.get("GridEngine_PEname", None) log_file = os.path.join(log_dir, "mapReads.log") command_line = "cfsan_snp_pipeline map_reads --threads " + str( threads_per_process) + force_flag + reference_file_path + " {1} {2}" job_id_map_reads = runner.run_array( command_line, "mapReads", log_file, sample_full_path_names_file, max_processes=max_processes, wait_for=[job_id_index_ref], threads=threads_per_process, parallel_environment=parallel_environment) progress("Step 4 - Find sites with SNPs in each sample") if job_queue_mgr in ["grid", "torque"]: time.sleep( 1.0 + float(sample_count) / 150 ) # workaround torque bug when submitting two large consecutive array jobs, potential bug for grid log_file = os.path.join(log_dir, "callSites.log") command_line = "cfsan_snp_pipeline call_sites" + force_flag + reference_file_path + " {1}" job_id_call_sites = runner.run_array(command_line, "callSites", log_file, sample_dirs_file, max_processes=max_cpu_cores, wait_for_array=[job_id_map_reads], slot_dependency=True) progress("Step 5 - Filter abnormal SNP regions") log_file = os.path.join(log_dir, "filterRegions.log") extra_params = os.environ.get("FilterRegions_ExtraParams", "") command_line = "cfsan_snp_pipeline filter_regions" + force_flag + "-n var.flt.vcf " + sample_dirs_file + ' ' + reference_file_path + ' ' + extra_params job_id_filter_regions = runner.run(command_line, "filterRegions", log_file, wait_for_array=[job_id_call_sites]) # Starting from here, there are 2 threads: # Thread X.1: the thread processing the original VCF files and corresponding downstream results # Thread X.2: the thread processing the preserved VCF files and corresponding downstream results progress( "Step 6.1 - Merge the SNP sites across all samples into the SNP list file" ) # The mergeSites process creates the filtered list of sample directories. It is the list of samples not having excessive snps. # When running on a workstation, the file exists at this point during the script execution, but on grid or torque, it has not yet been created. However, # we know the path to the file regardless of whether it exists yet. filtered_sample_dirs_file = sample_dirs_file + ".OrigVCF.filtered" # touch $filtered_sample_dirs_file # TODO: why was this touch here in the old run_snp_pipeline.sh script? log_file = os.path.join(log_dir, "mergeSites.log") output_file = os.path.join(work_dir, "snplist.txt") extra_params = os.environ.get("MergeSites_ExtraParams", "") command_line = "cfsan_snp_pipeline merge_sites" + force_flag + "-n var.flt.vcf -o " + output_file + ' ' + extra_params + ' ' + sample_dirs_file + ' ' + filtered_sample_dirs_file job_id_merge_sites = runner.run(command_line, "mergeSites", log_file, wait_for=[job_id_filter_regions]) progress( "Step 6.2 - Merge the SNP sites across all samples into the SNP list file" ) # Create another copy of sample directories file, for the thread processing preserved snp files. filtered_sample_dirs_file2 = sample_dirs_file + ".PresVCF.filtered" # touch $filtered_sample_dirs_file2 # TODO: why was this touch here in the old run_snp_pipeline.sh script? log_file = os.path.join(log_dir, "mergeSites_preserved.log") output_file = os.path.join(work_dir, "snplist_preserved.txt") extra_params = os.environ.get("MergeSites_ExtraParams", "") command_line = "cfsan_snp_pipeline merge_sites" + force_flag + "-n var.flt_preserved.vcf -o " + output_file + ' ' + extra_params + ' ' + sample_dirs_file + ' ' + filtered_sample_dirs_file2 job_id_merge_sites2 = runner.run(command_line, "mergeSites_preserved", log_file, wait_for=[job_id_filter_regions]) progress("Step 7.1 - Call the consensus SNPs for each sample") log_file = os.path.join(log_dir, "callConsensus.log") list_file = os.path.join(work_dir, "snplist.txt") output_file = "{1}/consensus.fasta" extra_params = os.environ.get("CallConsensus_ExtraParams", "") command_line = "cfsan_snp_pipeline call_consensus" + force_flag + "-l " + list_file + " -o " + output_file + " --vcfRefName " + reference_file_name + ' ' + extra_params + " --vcfFileName consensus.vcf {1}/reads.all.pileup" job_id_call_consensus = runner.run_array(command_line, "callConsensus", log_file, sample_dirs_file, max_processes=max_cpu_cores, wait_for=[job_id_merge_sites]) progress("Step 7.2 - Call the consensus SNPs for each sample") log_file = os.path.join(log_dir, "callConsensus_preserved.log") list_file = os.path.join(work_dir, "snplist_preserved.txt") output_file = "{1}/consensus_preserved.fasta" extra_params = os.environ.get("CallConsensus_ExtraParams", "") command_line = "cfsan_snp_pipeline call_consensus" + force_flag + "-l " + list_file + " -o " + output_file + " -e {1}/var.flt_removed.vcf --vcfRefName " + reference_file_name + ' ' + extra_params + " --vcfFileName consensus_preserved.vcf {1}/reads.all.pileup" job_id_call_consensus2 = runner.run_array(command_line, "callConsensus_preserved", log_file, sample_dirs_file, max_processes=max_cpu_cores, wait_for=[job_id_merge_sites2]) progress("Step 8.1 - Create the SNP matrix") log_file = os.path.join(log_dir, "snpMatrix.log") output_file = os.path.join(work_dir, "snpma.fasta") extra_params = os.environ.get("SnpMatrix_ExtraParams", "") command_line = "cfsan_snp_pipeline snp_matrix" + force_flag + "-c consensus.fasta -o " + output_file + ' ' + extra_params + ' ' + filtered_sample_dirs_file job_id_snp_matrix = runner.run(command_line, "snpMatrix", log_file, wait_for_array=[job_id_call_consensus]) progress("Step 8.2 - Create the SNP matrix") log_file = os.path.join(log_dir, "snpMatrix_preserved.log") output_file = os.path.join(work_dir, "snpma_preserved.fasta") extra_params = os.environ.get("SnpMatrix_ExtraParams", "") command_line = "cfsan_snp_pipeline snp_matrix" + force_flag + "-c consensus_preserved.fasta -o " + output_file + ' ' + extra_params + ' ' + filtered_sample_dirs_file2 job_id_snp_matrix2 = runner.run(command_line, "snpMatrix_preserved", log_file, wait_for_array=[job_id_call_consensus2]) progress("Step 9.1 - Create the reference sequence at SNP sites") log_file = os.path.join(log_dir, "snpReference.log") list_file = os.path.join(work_dir, "snplist.txt") output_file = os.path.join(work_dir, "referenceSNP.fasta") extra_params = os.environ.get("SnpReference_ExtraParams", "") command_line = "cfsan_snp_pipeline snp_reference" + force_flag + "-l " + list_file + " -o " + output_file + ' ' + extra_params + ' ' + reference_file_path job_id_snp_reference = runner.run(command_line, "snpReference", log_file, wait_for_array=[job_id_call_consensus]) progress("Step 9.2 - Create the reference sequence at SNP sites") log_file = os.path.join(log_dir, "snpReference_preserved.log") list_file = os.path.join(work_dir, "snplist_preserved.txt") output_file = os.path.join(work_dir, "referenceSNP_preserved.fasta") extra_params = os.environ.get("SnpReference_ExtraParams", "") command_line = "cfsan_snp_pipeline snp_reference" + force_flag + "-l " + list_file + " -o " + output_file + ' ' + extra_params + ' ' + reference_file_path job_id_snp_reference2 = runner.run(command_line, "snpReference_preserved", log_file, wait_for_array=[job_id_call_consensus2]) progress("Step 10.1 - Merge sample VCFs to create the multi-VCF file") if "--vcfFileName" in os.environ.get("CallConsensus_ExtraParams", ""): log_file = os.path.join(log_dir, "mergeVcfs.log") output_file = os.path.join(work_dir, "snpma.vcf") extra_params = os.environ.get("MergeVcfs_ExtraParams", "") command_line = "cfsan_snp_pipeline merge_vcfs" + force_flag + "-o " + output_file + ' ' + extra_params + ' ' + filtered_sample_dirs_file job_id_merge_vcfs = runner.run(command_line, "mergeVcfs", log_file, wait_for_array=[job_id_call_consensus]) else: print("Skipped per CallConsensus_ExtraParams configuration") progress("Step 10.2 - Merge sample VCFs to create the multi-VCF file") if "--vcfFileName" in os.environ.get("CallConsensus_ExtraParams", ""): log_file = os.path.join(log_dir, "mergeVcfs_preserved.log") output_file = os.path.join(work_dir, "snpma_preserved.vcf") extra_params = os.environ.get("MergeVcfs_ExtraParams", "") command_line = "cfsan_snp_pipeline merge_vcfs" + force_flag + "-n consensus_preserved.vcf -o " + output_file + ' ' + extra_params + ' ' + filtered_sample_dirs_file2 job_id_merge_vcfs2 = runner.run( command_line, "mergeVcfs_preserved", log_file, wait_for_array=[job_id_call_consensus2]) else: print("Skipped per CallConsensus_ExtraParams configuration") progress("Step 11.1 - Calculate SNP distance matrix") log_file = os.path.join(log_dir, "distance.log") input_file = os.path.join(work_dir, "snpma.fasta") pair_output_file = os.path.join(work_dir, "snp_distance_pairwise.tsv") matrix_output_file = os.path.join(work_dir, "snp_distance_matrix.tsv") command_line = "cfsan_snp_pipeline distance" + force_flag + "-p " + pair_output_file + " -m " + matrix_output_file + ' ' + input_file job_id_distance = runner.run(command_line, "distance", log_file, wait_for=[job_id_snp_matrix]) progress("Step 11.2 - Calculate SNP distance matrix") log_file = os.path.join(log_dir, "distance_preserved.log") input_file = os.path.join(work_dir, "snpma_preserved.fasta") pair_output_file = os.path.join(work_dir, "snp_distance_pairwise_preserved.tsv") matrix_output_file = os.path.join(work_dir, "snp_distance_matrix_preserved.tsv") command_line = "cfsan_snp_pipeline distance" + force_flag + "-p " + pair_output_file + " -m " + matrix_output_file + ' ' + input_file job_id_distance2 = runner.run(command_line, "distance_preserved", log_file, wait_for=[job_id_snp_matrix2]) progress("Step 12 - Collect metrics for each sample") log_file = os.path.join(log_dir, "collectMetrics.log") output_file = "{1}/metrics" extra_params = os.environ.get("CollectMetrics_ExtraParams", "") command_line = "cfsan_snp_pipeline collect_metrics" + force_flag + "-o " + output_file + ' ' + extra_params + " {1} " + reference_file_path job_id_collect_metrics = runner.run_array( command_line, "collectMetrics", log_file, sample_dirs_file, max_processes=max_cpu_cores, wait_for_array=[job_id_call_consensus, job_id_call_consensus2], slot_dependency=True) progress( "Step 13 - Combine the metrics across all samples into the metrics table" ) log_file = os.path.join(log_dir, "combineMetrics.log") output_file = os.path.join(work_dir, "metrics.tsv") extra_params = os.environ.get("CombineMetrics_ExtraParams", "") command_line = "cfsan_snp_pipeline combine_metrics" + force_flag + "-n metrics -o " + output_file + ' ' + extra_params + ' ' + sample_dirs_file combine_metrics_job_id = runner.run( command_line, "combineMetrics", log_file, wait_for_array=[job_id_collect_metrics]) # Decide whether to purge the intermediate output files upon successful completion. # Case 1: we are running on the HPC. We always need to submit the purge task. It will decide to do nothing if there were errors. if job_queue_mgr is not None: # HPC need_purge = args.purge # need to submit the purge task, it might decide to do nothing if there were errors # Case 2: we are running locally and we know right now whether there were any errors. # Case 2a: We are configured to stop on error, but the fact that we got this far means there were no errors -- so we need to purge. # Case 2b: We are configured to ignore errors, so now we look for evidence of errors and purge if there were no errors. else: errors_detected = os.path.isfile(error_output_file) need_purge = args.purge and not errors_detected if need_purge: progress("Step 14 - Purge the intermediate output files") log_file = os.path.join(log_dir, "purge.log") command_line = "cfsan_snp_pipeline purge " + work_dir purge_job_id = runner.run(command_line, "purge", log_file, wait_for=[combine_metrics_job_id]) # Step 15 - Notify user of any non-fatal errors accumulated during processing if os.path.isfile(error_output_file) and os.path.getsize( error_output_file) > 0 and not stop_on_error: print( "\nThere were errors processing some samples.\nSee the log file %s for a summary of errors." % error_output_file, file=sys.stderr) # Exit here to prevent showing the "cfsan_snp_pipeline run finished" message. The jobs are queued, not finished yet. if job_queue_mgr is not None: # HPC sys.exit(0) else: end_time = time.time() elapsed_time = end_time - start_time print("Elapsed time =", elapsed_time)
def runTests(self): all_tests = TestSet() passed = TestSet() failed = TestSet() valgrind = TestSet() crashed = TestSet() timed_out = TestSet() def get_job(test): def run_job(): def callback(rv, signal, proc, killed): test.setStatus(rv, signal, proc, killed) #This is cleanup code that should perhaps be elsewhere if test.testrunner_fn is not None: os.unlink(test.testrunner_fn) if test.test_code_fn is not None: os.unlink(test.test_code_fn) test.testrunner_fn = None return test.run(self.engine, opts.engine_args), callback, test.timeout_multipler return run_job def get_job_fast(test_file): def run_job(): def callback(rv, signal, proc, killed): test_file.setTestsStatus(rv, signal, proc, killed) #This is cleanup code that should perhaps be elsewhere if test_file.testrunner_fn is not None: os.unlink(test_file.testrunner_fn) test_file.testrunner_fn = None return test_file.runFile(self.engine, opts.engine_args), callback, None return run_job sys.stderr.write("Running tests...\n") if opts.fast: timeout = 10 elif opts.valgrind: timeout = 30*50 else: timeout = 30 test_runner = JobRunner(self.num_processes, timeout=timeout) if opts.fast: for test_file in self.compiled_files: test_names = self.test_cases[test_file.path] test_file.setTests(test_names) test_runner.queue([get_job_fast(test_file)]) else: for test_file in self.compiled_files: test_names = self.test_cases[test_file.path] test_runner.queue([get_job(item) for item in test_file.setTests(test_names)]) test_runner.run() crashed_files = [] for test_file in self.compiled_files: if opts.fast and test_file.crashed: crashed_files.append(test_file) continue all_tests |= test_file.testsRun() passed |= test_file.testsPassed() failed |= test_file.testsFailed() valgrind |= test_file.testsValgrind() crashed |= test_file.testsCrashed() timed_out |= test_file.testsTimedOut() results = regression.Results(getEngineName(self.engine), passed, failed, valgrind, crashed, timed_out, loaded_files=self.all_files, compile_failed=[f.relative_path for f in self.uncompiled_files], crashed_files=[f.relative_path for f in crashed_files]) tests_by_id = {} for test_file in self.tests.itervalues(): for test in test_file.itervalues(): tests_by_id[test.id] = test return tests_by_id, results