示例#1
0
    def step(self, net: NeuralNet) -> None:
        for param, grad in net.params_and_grads():

            predicted = net.forward(net.curr_batch.inputs)
            loss_old = net.loss_f.loss(predicted, net.curr_batch.targets)
            old_param = copy.deepcopy(param)
            param -= self.lr * grad
            count = 0

            predicted = net.forward(net.curr_batch.inputs)
            loss = net.loss_f.loss(predicted, net.curr_batch.targets)

            temp_lr = self.lr
            while not loss <= loss_old - self.alpha * (
                    np.linalg.norm(param - old_param))**2:

                print(f'lr: {temp_lr}')

                temp_lr = temp_lr / 2.0

                param = old_param - temp_lr * grad

                predicted = net.forward(net.curr_batch.inputs)
                loss = net.loss_f.loss(predicted, net.curr_batch.targets)
                #print(f'\nloss: {loss}\nloss_desejada: {loss_old - self.alpha*(np.linalg.norm(param - old_param))**2}')
                if temp_lr < 1e-10:
                    print('Passo muito pequeno')
                    break
                count = count + 1
示例#2
0
    def step(self, net: NeuralNet) -> None:

        i = 0
        for param, grad in net.params_and_grads():

            G_temp = self.gamma * self.G[i] + (1 - self.gamma) * (grad**2)
            param -= (self.lr / (np.sqrt(G_temp + self.epsilon))) * grad
            # except ValueError:
            #     G_temp = self.gamma*self.G[i] + (1-self.gamma)*(grad[0]**2)
            #     param -= (self.lr/(np.sqrt(G_temp + self.epsilon)))*grad[0]

            self.G[i] = G_temp
            i = i + 1
示例#3
0
    def step(self, net: NeuralNet) -> None:

        i = 0
        for param, grad in net.params_and_grads():
            #try:
            G_temp = (self.gamma2 * self.G[i] +
                      (1.0 - self.gamma2) * grad**2.0) / (
                          1.0 - np.power(self.gamma2, net.n_iter + 1.0))
            m_temp = (self.gamma1 * self.m[i] + (1.0 - self.gamma1) * grad) / (
                1.0 - np.power(self.gamma1, net.n_iter + 1.0))
            param -= (self.lr * self.m[i]) / (np.sqrt(self.G[i]) +
                                              self.epsilon)
            # except ValueError:
            #     G_temp = (self.gamma2*self.G[i] + (1.0 - self.gamma2)*grad[0]**2.0)/(1.0 - np.power(self.gamma2, net.n_iter+1.0))
            #     m_temp = (self.gamma1*self.m[i] + (1.0 -self.gamma1)*grad[0])/(1.0-np.power(self.gamma1, net.n_iter+1.0) )
            #     param -= (self.lr*self.m[i])/(np.sqrt(self.G[i]) + self.epsilon)

            self.G[i] = G_temp
            self.m[i] = m_temp
            i = i + 1
示例#4
0
 def step(self, net: NeuralNet) -> None:
     for param, grad in net.params_and_grads():
         param -= self.lr * grad