def __init__(self):
        super(self.__class__, self).__init__()

        # set target_names
        self.target_names = ['background'] + \
            [datum['name']
             for datum in jsk_apc2016_common.get_object_data()]
        n_class = len(self.target_names)
        assert n_class == 40

        # load model
        self.gpu = rospy.get_param('~gpu', 0)
        chainermodel = rospy.get_param('~chainermodel')
        self.model = FCN32s(n_class=n_class)
        S.load_hdf5(chainermodel, self.model)
        if self.gpu != -1:
            self.model.to_gpu(self.gpu)
        jsk_logwarn('>> Model is loaded <<')

        while True:
            self.tote_contents = rospy.get_param('~tote_contents', None)
            if self.tote_contents is not None:
                break
            logwarn_throttle(10, 'param ~tote_contents is not set. Waiting..')
            rospy.sleep(0.1)
        self.label_names = rospy.get_param('~label_names')
        jsk_logwarn('>> Param is set <<')

        self.pub = self.advertise('~output', Image, queue_size=1)
        self.pub_debug = self.advertise('~debug', Image, queue_size=1)
    def __init__(self):
        super(self.__class__, self).__init__()

        # set target_names
        self.target_names = ['background'] + \
            [datum['name']
             for datum in jsk_apc2016_common.get_object_data()]
        n_class = len(self.target_names)
        assert n_class == 40

        # load model
        self.gpu = rospy.get_param('~gpu', 0)
        chainermodel = rospy.get_param('~chainermodel')
        self.model = FCN32s(n_class=n_class)
        S.load_hdf5(chainermodel, self.model)
        if self.gpu != -1:
            self.model.to_gpu(self.gpu)
        jsk_logwarn('>> Model is loaded <<')

        while True:
            self.tote_contents = rospy.get_param('~tote_contents', None)
            if self.tote_contents is not None:
                break
            logwarn_throttle(10, 'param ~tote_contents is not set. Waiting..')
            rospy.sleep(0.1)
        self.label_names = rospy.get_param('~label_names')
        jsk_logwarn('>> Param is set <<')

        self.pub = self.advertise('~output', Image, queue_size=1)
        self.pub_debug = self.advertise('~debug', Image, queue_size=1)
示例#3
0
    def get_sorted_work_order(self):
        """Sort work order to maximize the score"""
        bin_order = self.work_order.keys()
        if self.object_data is not None:
            if all(self.gripper in x for x in
                   [d['graspability'].keys() for d in self.object_data]):

                def get_graspability(bin_):
                    target_object = self.work_order[bin_]
                    target_object_data = [
                        data for data in self.object_data
                        if data['name'] == target_object
                    ][0]
                    graspability = target_object_data['graspability'][
                        self.gripper]
                    return graspability

                # re-sort the work_order with graspability
                bin_order = sorted(bin_order, key=get_graspability)
            else:
                jsk_logwarn('Not sorted by graspability')
                jsk_logwarn(
                    'Not all object_data have graspability key: {gripper}'.
                    format(gripper=self.gripper))
        bin_order = sorted(self.work_order.keys(),
                           key=lambda bin_: len(self.bin_contents[bin_]))
        work_order = [(bin_, self.work_order[bin_]) for bin_ in bin_order]
        return work_order
    def _callback(self, img_msg, mask_msg):
        bridge = cv_bridge.CvBridge()
        bgr_img = bridge.imgmsg_to_cv2(img_msg, desired_encoding='bgr8')
        mask_img = bridge.imgmsg_to_cv2(mask_msg, desired_encoding='mono8')
        if mask_img.size < 1:
            logwarn_throttle(10, 'Too small sized image')
            return
        logwarn_throttle(10, '[FCNMaskForLabelNames] >> Start Processing <<')
        if mask_img.ndim == 3 and mask_img.shape[2] == 1:
            mask_img = mask_img.reshape(mask_img.shape[:2])
        if mask_img.shape != bgr_img.shape[:2]:
            jsk_logwarn('Size of mask and color image is different.'
                        'Resizing.. mask {0} to {1}'
                        .format(mask_img.shape, bgr_img.shape[:2]))
            mask_img = resize(mask_img, bgr_img.shape[:2],
                              preserve_range=True).astype(np.uint8)

        blob = bgr_img - self.mean_bgr
        blob = blob.transpose((2, 0, 1))

        x_data = np.array([blob], dtype=np.float32)
        if self.gpu != -1:
            x_data = cuda.to_gpu(x_data, device=self.gpu)
        x = Variable(x_data, volatile=True)
        self.model(x)
        pred_datum = cuda.to_cpu(self.model.score.data[0])

        candidate_labels = [self.target_names.index(name)
                            for name in self.tote_contents]
        label_pred_in_candidates = pred_datum[candidate_labels].argmax(axis=0)
        label_pred = np.zeros_like(label_pred_in_candidates)
        for idx, label_val in enumerate(candidate_labels):
            label_pred[label_pred_in_candidates == idx] = label_val
        label_pred[mask_img == 0] = 0  # set bg_label

        label_viz = label2rgb(label_pred, bgr_img, bg_label=0)
        label_viz = (label_viz * 255).astype(np.uint8)
        debug_msg = bridge.cv2_to_imgmsg(label_viz, encoding='rgb8')
        debug_msg.header = img_msg.header
        self.pub_debug.publish(debug_msg)

        output_mask = np.ones(mask_img.shape, dtype=np.uint8)
        output_mask *= 255
        for label_val, label_name in enumerate(self.target_names):
            if label_name in self.label_names:
                assert label_name == 'kleenex_paper_towels'
                assert label_val == 21
                label_mask = ((label_pred == label_val) * 255).astype(np.uint8)
                contours, hierachy = cv2.findContours(
                    label_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
                cv2.drawContours(output_mask, contours, -1, 255, -1)
                # output_mask[label_pred == label_val] = False
        # output_mask = output_mask.astype(np.uint8)
        # output_mask[output_mask == 1] = 255
        output_mask[mask_img == 0] = 0
        output_mask_msg = bridge.cv2_to_imgmsg(output_mask, encoding='mono8')
        output_mask_msg.header = img_msg.header
        self.pub.publish(output_mask_msg)
        logwarn_throttle(10, '[FCNMaskForLabelNames] >> Finshed processing <<')
示例#5
0
 def get_work_order_msg(self):
     work_order = self.get_sorted_work_order()
     if self.max_weight == -1:
         self.max_weight = np.inf
     msg = dict(left=WorkOrderArray(), right=WorkOrderArray())
     abandon_target_objects = [
         'genuine_joe_plastic_stir_sticks',
         'cheezit_big_original',
         'rolodex_jumbo_pencil_cup',
         'champion_copper_plus_spark_plug',
         'oreo_mega_stuf',
     ]
     abandon_bin_objects = [
         'rolodex_jumbo_pencil_cup',
         'oreo_mega_stuf'
     ]
     # >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
     # TODO: PLEASE FILL ABANDON BINS
     abandon_bins = ''
     # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
     for bin_, target_object in work_order:
         if bin_ in abandon_bins:
             jsk_logwarn('Skipping bin {bin} because of user request'
                         .format(bin=bin_))
             continue
         if self.object_data is not None:
             target_object_data = [data for data in self.object_data
                                   if data['name'] == target_object][0]
             if target_object_data['weight'] > self.max_weight:
                 jsk_logwarn('Skipping target {obj} in {bin_}: it exceeds max weight {weight} > {max_weight}'
                             .format(obj=target_object_data['name'], bin_=bin_,
                                     weight=target_object_data['weight'], max_weight=self.max_weight))
                 continue
             if target_object_data['graspability'][self.gripper] > 3:
                 jsk_logwarn('Skipping target {obj} in {bin_}: it exceeds graspability'
                             '{grasp} > {max_grasp} with gripper {gripper}'
                             .format(obj=target_object_data['name'], bin_=bin_,
                                     grasp=target_object_data['graspability'][self.gripper],
                                     max_grasp=3,
                                     gripper=self.gripper))
                 continue
         else:
             if target_object in abandon_target_objects:
                 jsk_logwarn('Skipping target {obj} in {bin_}: it is listed as abandon target'
                             .format(obj=target_object, bin_=bin_))
                 continue
             if any(bin_object in abandon_bin_objects for bin_object in self.bin_contents[bin_]):
                 jsk_logwarn('Skipping {bin_}: this bin contains abandon objects'.format(bin_=bin_))
                 continue
         # if len(bin_contents[bin_]) > 5:  # Level3
         #     jsk_logwarn('Skipping {bin_}: this bin contains more than 5 objects'.format(bin_=bin_))
         #     continue
         order = WorkOrder(bin=bin_, object=target_object)
         if bin_ in 'abdegj':
             msg['left'].array.append(order)
         elif bin_ in 'cfhikl':
             msg['right'].array.append(order)
     return msg
示例#6
0
 def __init__(self):
     rp = rospkg.RosPack()
     input_path = rospy.get_param('~json', None)
     if input_path is None:
         jsk_logwarn('must set json file path to param ~json')
         return
     with open(input_path, 'r') as f:
         self.output_data = json.load(f)
     self.tote_contents = self.output_data['tote_contents']
     self.bin_contents = self.output_data['bin_contents']
     self.work_order = jsk_apc2016_common.get_work_order(input_path)
     self.output_path = osp.join(
             rp.get_path('jsk_2016_01_baxter_apc'),
             'output',
             'output_' + osp.basename(input_path))
     self.arm_state = {}
     self.arm_target_bin = {}
     self.finished_bin_list = []
     with open(self.output_path, 'w') as f:
         json.dump(self.output_data, f, sort_keys=True, indent=4)
示例#7
0
    def get_sorted_work_order(self):
        """Sort work order to maximize the score"""
        bin_order = self.work_order.keys()
        if self.object_data is not None:
            if all(self.gripper in x for x in [d['graspability'].keys() for d in self.object_data]):

                def get_graspability(bin_):
                    target_object = self.work_order[bin_]
                    target_object_data = [data for data in self.object_data
                                          if data['name'] == target_object][0]
                    graspability = target_object_data['graspability'][self.gripper]
                    return graspability

                # re-sort the work_order with graspability
                bin_order = sorted(bin_order, key=get_graspability)
            else:
                jsk_logwarn('Not sorted by graspability')
                jsk_logwarn('Not all object_data have graspability key: {gripper}'
                            .format(gripper=self.gripper))
        bin_order = sorted(self.work_order.keys(),
                           key=lambda bin_: len(self.bin_contents[bin_]))
        work_order = [(bin_, self.work_order[bin_]) for bin_ in bin_order]
        return work_order
 def test_jsk_logwarn(self, mock_get_name, mock_log):
     mock_get_name.return_value = '/spam'
     jsk_logwarn('spam')
     mock_log.assert_called_with('[/spam] [TestJSKLogXXX::test_jsk_logwarn] spam')
    def _callback(self, img_msg, mask_msg):
        bridge = cv_bridge.CvBridge()
        bgr_img = bridge.imgmsg_to_cv2(img_msg, desired_encoding='bgr8')
        mask_img = bridge.imgmsg_to_cv2(mask_msg, desired_encoding='mono8')
        if mask_img.size < 1:
            logwarn_throttle(10, 'Too small sized image')
            return
        logwarn_throttle(10, '[FCNMaskForLabelNames] >> Start Processing <<')
        if mask_img.ndim == 3 and mask_img.shape[2] == 1:
            mask_img = mask_img.reshape(mask_img.shape[:2])
        if mask_img.shape != bgr_img.shape[:2]:
            jsk_logwarn('Size of mask and color image is different.'
                        'Resizing.. mask {0} to {1}'.format(
                            mask_img.shape, bgr_img.shape[:2]))
            mask_img = resize(mask_img, bgr_img.shape[:2],
                              preserve_range=True).astype(np.uint8)

        blob = bgr_img - self.mean_bgr
        blob = blob.transpose((2, 0, 1))

        x_data = np.array([blob], dtype=np.float32)
        if self.gpu != -1:
            x_data = cuda.to_gpu(x_data, device=self.gpu)
        x = Variable(x_data, volatile=True)
        self.model(x)
        pred_datum = cuda.to_cpu(self.model.score.data[0])

        candidate_labels = [
            self.target_names.index(name) for name in self.tote_contents
        ]
        label_pred_in_candidates = pred_datum[candidate_labels].argmax(axis=0)
        label_pred = np.zeros_like(label_pred_in_candidates)
        for idx, label_val in enumerate(candidate_labels):
            label_pred[label_pred_in_candidates == idx] = label_val
        label_pred[mask_img == 0] = 0  # set bg_label

        label_viz = label2rgb(label_pred, bgr_img, bg_label=0)
        label_viz = (label_viz * 255).astype(np.uint8)
        debug_msg = bridge.cv2_to_imgmsg(label_viz, encoding='rgb8')
        debug_msg.header = img_msg.header
        self.pub_debug.publish(debug_msg)

        output_mask = np.ones(mask_img.shape, dtype=np.uint8)
        output_mask *= 255
        for label_val, label_name in enumerate(self.target_names):
            if label_name in self.label_names:
                assert label_name == 'kleenex_paper_towels'
                assert label_val == 21
                label_mask = ((label_pred == label_val) * 255).astype(np.uint8)
                contours, hierachy = cv2.findContours(label_mask,
                                                      cv2.RETR_TREE,
                                                      cv2.CHAIN_APPROX_SIMPLE)
                cv2.drawContours(output_mask, contours, -1, 255, -1)
                # output_mask[label_pred == label_val] = False
        # output_mask = output_mask.astype(np.uint8)
        # output_mask[output_mask == 1] = 255
        output_mask[mask_img == 0] = 0
        output_mask_msg = bridge.cv2_to_imgmsg(output_mask, encoding='mono8')
        output_mask_msg.header = img_msg.header
        self.pub.publish(output_mask_msg)
        logwarn_throttle(10, '[FCNMaskForLabelNames] >> Finshed processing <<')
示例#10
0
 def test_jsk_logwarn(self, mock_log):
     jsk_logwarn('spam')
     mock_log.assert_called_with('[TestJSKLogXXX::test_jsk_logwarn] spam')
示例#11
0
 def get_work_order_msg(self):
     work_order = self.get_sorted_work_order()
     if self.max_weight == -1:
         self.max_weight = np.inf
     msg = dict(left=WorkOrderArray(), right=WorkOrderArray())
     abandon_target_objects = [
         'genuine_joe_plastic_stir_sticks',
         'cheezit_big_original',
         'rolodex_jumbo_pencil_cup',
         'champion_copper_plus_spark_plug',
         'oreo_mega_stuf',
     ]
     abandon_bin_objects = ['rolodex_jumbo_pencil_cup', 'oreo_mega_stuf']
     # >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
     # TODO: PLEASE FILL ABANDON BINS
     abandon_bins = ''
     # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
     for bin_, target_object in work_order:
         if bin_ in abandon_bins:
             jsk_logwarn(
                 'Skipping bin {bin} because of user request'.format(
                     bin=bin_))
             continue
         if self.object_data is not None:
             target_object_data = [
                 data for data in self.object_data
                 if data['name'] == target_object
             ][0]
             if target_object_data['weight'] > self.max_weight:
                 jsk_logwarn(
                     'Skipping target {obj} in {bin_}: it exceeds max weight {weight} > {max_weight}'
                     .format(obj=target_object_data['name'],
                             bin_=bin_,
                             weight=target_object_data['weight'],
                             max_weight=self.max_weight))
                 continue
             if target_object_data['graspability'][self.gripper] > 3:
                 jsk_logwarn(
                     'Skipping target {obj} in {bin_}: it exceeds graspability'
                     '{grasp} > {max_grasp} with gripper {gripper}'.format(
                         obj=target_object_data['name'],
                         bin_=bin_,
                         grasp=target_object_data['graspability'][
                             self.gripper],
                         max_grasp=3,
                         gripper=self.gripper))
                 continue
         else:
             if target_object in abandon_target_objects:
                 jsk_logwarn(
                     'Skipping target {obj} in {bin_}: it is listed as abandon target'
                     .format(obj=target_object, bin_=bin_))
                 continue
             if any(bin_object in abandon_bin_objects
                    for bin_object in self.bin_contents[bin_]):
                 jsk_logwarn(
                     'Skipping {bin_}: this bin contains abandon objects'.
                     format(bin_=bin_))
                 continue
         # if len(bin_contents[bin_]) > 5:  # Level3
         #     jsk_logwarn('Skipping {bin_}: this bin contains more than 5 objects'.format(bin_=bin_))
         #     continue
         order = WorkOrder(bin=bin_, object=target_object)
         if bin_ in 'abdegj':
             msg['left'].array.append(order)
         elif bin_ in 'cfhikl':
             msg['right'].array.append(order)
     return msg