示例#1
0
 def test_method_param(self):
   self.assertTrue('learning_rate' in Config(method='perceptron')['parameter'])
   self.assertTrue('sensitivity' in Config(method='PA')['parameter'])
   self.assertTrue('sensitivity' in Config(method='PA1')['parameter'])
   self.assertTrue('regularization_weight' in Config(method='PA1')['parameter'])
   self.assertTrue('nearest_neighbor_num' in Config(method='NN')['parameter'])
   self.assertTrue('nearest_neighbor_num' in Config(method='cosine')['parameter'])
   self.assertTrue('nearest_neighbor_num' in Config(method='euclidean')['parameter'])
示例#2
0
# Load a CSV file.
loader = CSVLoader('wine.csv')

# Define a Schema that defines types for each columns of the CSV file.
schema = Schema({
    'quality': Schema.TARGET,
}, Schema.NUMBER)

# Create a Dataset
dataset = Dataset(loader, schema).shuffle()
n_samples = len(dataset)
n_train_samples = int(n_samples * 0.75)

# Create a Regression Service
cfg = Config.default()
regression = Regression.run(cfg)

print("Started Service: {0}".format(regression))

# Train the regression using the first half of the dataset.
train_ds = dataset[:n_train_samples]
print("Training...: {0}".format(train_ds))
for _ in regression.train(train_ds):
    pass

# Test the regression using the last half of the dataset.
test_ds = dataset[n_train_samples:]
print("Testing...: {0}".format(test_ds))
mse, mae = 0, 0
for (idx, label, result) in regression.estimate(test_ds):
示例#3
0
# Load a CSV file.
loader = CSVLoader('wine.csv')

# Define a Schema that defines types for each columns of the CSV file.
schema = Schema({
  'quality': Schema.TARGET,
}, Schema.NUMBER)

# Create a Dataset
dataset = Dataset(loader, schema).shuffle()
n_samples = len(dataset)
n_train_samples = int(n_samples * 0.75)

# Create a Regression Service
cfg = Config.default()
regression = Regression.run(cfg)

print("Started Service: {0}".format(regression))

# Train the regression using the first half of the dataset.
train_ds = dataset[:n_train_samples]
print("Training...: {0}".format(train_ds))
for _ in regression.train(train_ds): pass

# Test the regression using the last half of the dataset.
test_ds = dataset[n_train_samples:]
print("Testing...: {0}".format(test_ds))
mse, mae = 0, 0
for (idx, label, result) in regression.estimate(test_ds):
  diff = np.abs(label - result)
示例#4
0
 def test_default(self):
   config = Config.default()
   self.assertEqual('AROW', config['method'])
示例#5
0
 def test_methods(self):
   config = Config()
   self.assertTrue(isinstance(config.methods(), list))
示例#6
0
 def test_simple(self):
   config = Config()
   self.assertEqual('AROW', config['method'])
示例#7
0
 def test_embedded(self):
   regression = Regression.run(Config(), embedded=True)
示例#8
0
from jubakit.regression import Regression, Dataset, Config

# Load the boston dataset.
boston = sklearn.datasets.load_boston()
X = boston.data
y = boston.target

# Create a Dataset
dataset = Dataset.from_array(boston.data, boston.target).shuffle()
n_samples = len(dataset)
n_train_samples = int(n_samples * 0.75)

# Create a Regression Service
cfg = Config(method='AROW',
             parameter={
                 'regularization_weight': 1.0,
                 'sensitivity': 1.0
             })
regression = Regression.run(cfg)

print("Started Service: {0}".format(regression))

# Train the regression using the first half of the dataset.
train_ds = dataset[:n_train_samples]
print("Training...: {0}".format(train_ds))
for _ in regression.train(train_ds):
    pass

# Test the regression using the last half of the dataset.
test_ds = dataset[n_train_samples:]
print("Testing...: {0}".format(test_ds))