示例#1
0
def test_get_aper_from_model_msa():
    """For a given exposures aperture, make sure the correct
    aperture reference data is returned for MSA mode"""

    datmod = PathlossModel()
    datmod.apertures.append({'shutters': 5})
    datmod.meta.exposure.type = 'NRS_MSASPEC'

    result = get_aperture_from_model(datmod, 5)

    assert (result == datmod.apertures[0])
示例#2
0
def test_get_aper_from_model_fixedslit():
    """For a given exposures aperture, make sure the correct
    aperture reference data is returned for fixedslit mode"""

    datmod = PathlossModel()
    datmod.apertures.append({'name': 'S200A1'})
    datmod.meta.exposure.type = 'NRS_FIXEDSLIT'

    result = get_aperture_from_model(datmod, 'S200A1')

    assert (result == datmod.apertures[0])
示例#3
0
def test_do_correction_nis_soss_pupil_position_is_none():
    """If pupil_position is None, skip correction"""

    datmod = MultiSlitModel()
    pathlossmod = PathlossModel()
    datmod.meta.exposure.type = 'NIS_SOSS'
    datmod.meta.visit.tsovisit = False
    datmod.meta.instrument.pupil_position = None

    result = do_correction(datmod, pathlossmod)
    assert (result.meta.cal_step.pathloss == 'SKIPPED')
示例#4
0
def test_do_correction_fixed_slit_exception():
    """If no matching aperture name found, exit."""

    datmod = MultiSlitModel()
    # Give input_model aperture name
    datmod.slits.append({'data':np.array([]), 'name':'S200A1'})
    # Do assign pathloss model aperture with similar name.
    pathlossmod = PathlossModel()
    datmod.meta.exposure.type = 'NRS_FIXEDSLIT'

    result, _ = do_correction(datmod, pathlossmod)
    assert(result.meta.cal_step.pathloss == 'COMPLETE')
示例#5
0
def test_do_correction_nis_soss_aperture_is_none():
    """If no matching aperture is found, skip correction."""

    datmod = MultiSlitModel()
    # Is FULL an option for NIRISS?
    # The test doesn't care but something to remember.
    datmod.slits.append({'data':np.array([]), 'name':'FULL'})
    # Don't assign pathloss model aperture with similar name
    pathlossmod = PathlossModel()
    datmod.meta.exposure.type = 'NIS_SOSS'
    datmod.meta.visit.tsovisit = False
    datmod.meta.instrument.pupil_position = 1

    result, _ = do_correction(datmod, pathlossmod)
    assert(result.meta.cal_step.pathloss == 'SKIPPED')
示例#6
0
def test_calculate_pathloss_vector_interpolation():
    """Calculate the pathloss vector for when interpolation is necessary."""

    datmod = PathlossModel()

    ref_data = {
        'pointsource_data': np.ones((10, 10, 10), dtype=np.float32),
        'pointsource_wcs': {
            'crval2': -0.5,
            'crpix2': 1.0,
            'cdelt2': 0.5,
            'cdelt3': 1.0,
            'crval1': -0.5,
            'crpix1': 1.0,
            'crpix3': 1.0,
            'crval3': 1.0,
            'cdelt1': 0.5
        }
    }

    datmod.apertures.append(ref_data)

    wavelength, pathloss, is_inside_slitlet = calculate_pathloss_vector(
        datmod.apertures[0].pointsource_data,
        datmod.apertures[0].pointsource_wcs, 0.0, 0.0)

    # Wavelength array is calculated with this: crval3 +(float(i+1) - crpix3)*cdelt3
    # Where i is the iteration of np.arange(wavesize) which is the 1st dimension of the pointsource
    # data array.
    wavelength_comparison = np.array(
        [1 + (float(i + 1) - 1.0) * 1 for i in np.arange(10)])
    assert (np.all(wavelength == wavelength_comparison))

    # In this instance we interpolate to get the array for pathloss VS wavelength.
    # With the current values inside of the of the pointsource_wcs starting at line 143 of pathloss.py
    # dx1 = 1 - int(1) = 0.0
    # dx2 = 1 - dx1 = 1.0
    # dy1 = 1 - int(1) = 0.0
    # dy2 = 1 - dx1 = 1.0
    # This means a11 == a12 == a21 == 0 and a22 == 1
    # This simplifies that pathloss vector to:
    # pathloss_vector = (a22*pathloss_ref[:,i,j]) = (1*pathloss_ref[:1,j])
    # Thus pathloss == the input array to the function.
    pathloss_comparison = datmod.apertures[0].pointsource_data
    assert (np.all(pathloss == pathloss_comparison))

    # With the current wcs values, the logic should be returning True
    assert (is_inside_slitlet == True)
示例#7
0
def test_calculate_pathloss_vector_pointsource_data():
    """Calculate pathloss vector for 3D pathloss data"""

    datmod = PathlossModel()

    ref_data = {
        'pointsource_data': np.ones((10, 10, 10), dtype=np.float32),
        'pointsource_wcs': {
            'crval2': -0.5,
            'crpix2': 1.0,
            'cdelt2': 0.05,
            'cdelt3': 1,
            'crval1': -0.5,
            'crpix1': 1.0,
            'crpix3': 1.0,
            'crval3': 1,
            'cdelt1': 0.05
        }
    }

    datmod.apertures.append(ref_data)

    wavelength, pathloss, is_inside_slitlet = calculate_pathloss_vector(
        datmod.apertures[0].pointsource_data,
        datmod.apertures[0].pointsource_wcs, 0.0, 0.0)

    # Wavelength array is calculated with this: crval3 +(float(i+1) - crpix3)*cdelt3
    # Where i is the iteration of np.arange(wavesize) which is the 1st dimension of the pointsource
    # data array.
    wavelength_comparison = np.array(
        [1 + (float(i + 1) - 1.0) * 1 for i in np.arange(10)])
    assert (np.allclose(wavelength, wavelength_comparison))

    # pathloss vector gets assigned at beginning of calculate_pathloss_vector and in this
    # case, doesnt change (np.zeros(wavesize, dtype=np.float32))
    pathloss_comparison = np.zeros(10, dtype=np.float32)
    assert (np.all(pathloss == pathloss_comparison))

    # With the current wcs values, the logic should be returning False
    assert (is_inside_slitlet == False)
示例#8
0
def test_calculate_pathloss_vector_uniform_data():
    """Calculate the pathloss vector for uniform data arrays."""

    datmod = PathlossModel()

    ref_data = {'uniform_data':np.ones((10,), dtype=np.float32),
                'uniform_wcs': {'crpix1': 1.0, 'cdelt1': 1, 'crval1': 1}}

    datmod.apertures.append(ref_data)

    wavelength, pathloss, _ = calculate_pathloss_vector(datmod.apertures[0].uniform_data,
                                                        datmod.apertures[0].uniform_wcs,
                                                        0.0, 0.0)

    # Wavelength array is calculated with this: crval1 +(float(i+1) - crpix1)*cdelt1
    # Where i is the iteration of np.arange(wavesize) which is the shape of the uniform
    # data array.
    comparison = np.array([1 +(float(i+1) - 1)*1 for i in np.arange(10)])
    assert(np.all(wavelength==comparison))

    # The same array is returned in this case
    assert(np.all(datmod.apertures[0].uniform_data == pathloss))