def pred_sensitivity(krigobj, init_samp, nvar, second=False): lb = (np.min(init_samp, axis=0)) ub = (np.max(init_samp, axis=0)) lb = np.hstack((lb, lb)) ub = np.hstack((ub, ub)) testSA = SobolI(nvar, krigobj, None, ub, lb, nMC=2e5) result = testSA.analyze(True, True, second) print("PREDICTED SA") for key in result.keys(): print(key + ':') if type(result[key]) is not dict: print(result[key]) else: for subkey in result[key].keys(): print(subkey + ':', result[key][subkey]) return result
def real_sensi(krigobj, init_samp, nvar, second=False, prob='hidimenra'): lb = (np.min(init_samp, axis=0)) ub = (np.max(init_samp, axis=0)) lb = np.hstack((lb, lb)) ub = np.hstack((ub, ub)) testSA = SobolI(nvar, krigobj, prob, ub, lb, nMC=2e5) result = testSA.analyze(True, True, second) print("REAL SA") for key in result.keys(): print(key + ':') if type(result[key]) is not dict: print(result[key]) else: for subkey in result[key].keys(): print(subkey + ':', result[key][subkey]) return result