示例#1
0
def dnld_refseqs_for_taxid(taxid,
                           filter_term,
                           taxonomy,
                           dir_cache_refseqs,
                           query='',
                           db='nuccore'):
    ft = None
    if filter_term == 'plastid':
        ft = '("chloroplast"[filter] OR "plastid"[filter])'
    else:
        ft = '("' + filter_term + '"[filter])'

    tax_terms = tuple(reversed(taxonomy.lineage_for_taxid(taxid)['names']))
    for tax_term in tax_terms:
        if tax_term is None:
            tax_term = taxonomy.scientific_name_for_taxid(taxid)
        term = '"RefSeq"[Keyword] AND "{}"[Primary Organism] AND {}'.format(
            tax_term, ft)
        term = query + term
        accs = set(accs_eutil(search_eutil(db, term)))
        if len(accs) > 0:
            plural = 'sequences'
            if len(accs) == 1:
                plural = 'sequence'
            Log.msg(
                'Found {} RefSeq {} {} for'.format(len(accs), filter_term,
                                                   plural), tax_term)
            # Random sample ###################################################
            if len(accs) > 10:
                Log.wrn('Using a random sample of ten RefSeq sequences.')
                random.seed(a=len(accs), version=2)
                accs = set(random.sample(accs, 10))
            ###################################################################
            break
        else:
            Log.wrn(
                'No RefSeq {} sequences were found for'.format(filter_term),
                tax_term)

    cache_path = opj(
        dir_cache_refseqs,
        filter_term + '__' + tax_term.replace(' ', '_') + '.fasta')
    parsed_fasta_cache = {}
    if ope(cache_path):
        parsed_fasta_cache = read_fasta(cache_path,
                                        seq_type=SEQ_TYPE_NT,
                                        def_to_first_space=True)
        parsed_fasta_cache = seq_records_to_dict(parsed_fasta_cache)
        for acc in parsed_fasta_cache:
            if acc in accs:
                accs.remove(acc)
    if len(accs) > 0:
        parsed_fasta = dnld_ncbi_seqs(db, list(accs))
        parsed_fasta = seq_records_to_dict(parsed_fasta, prepend_acc=True)
        parsed_fasta.update(parsed_fasta_cache)
        write_fasta(parsed_fasta, cache_path)

    return cache_path
示例#2
0
文件: eutils.py 项目: muti99/kakapo
def _process_downloaded_seq_data(efetch_txt: str, db: str, rettype: str,
                                 retmode: str):
    rec_list = list()
    if rettype == 'gb' and retmode == 'xml':
        rec_list = seq_records_gb(efetch_txt)
    elif rettype == 'fasta' and retmode == 'text':
        seq_type = None
        if db == 'nuccore':
            seq_type = SEQ_TYPE_NT
        elif db == 'protein':
            seq_type = SEQ_TYPE_AA
        rec_list = read_fasta(StringIO(efetch_txt), seq_type, parse_def=True)
    return rec_list
示例#3
0
def dnld_prot_seqs(ss, prot_acc_user, aa_prot_ncbi_file, dir_cache_prj):
    if len(prot_acc_user) != 0:
        acc_old = set()
        if ope(aa_prot_ncbi_file):
            _ = read_fasta(aa_prot_ncbi_file, SEQ_TYPE_AA)
            acc_old = set([x.definition.split('|')[0] for x in _])

        if acc_old == set(prot_acc_user):
            return prot_acc_user
        else:

            pickle_file = opj(dir_cache_prj, 'ncbi_prot_metadata_cache__' + ss)
            if ope(pickle_file):
                with open(pickle_file, 'rb') as f:
                    pa_info = pickle.load(f)

            print()
            Log.inf('Downloading protein sequences from NCBI:', ss)
            _ = dnld_ncbi_seqs('protein',
                               prot_acc_user,
                               rettype='gb',
                               retmode='xml')
            prot_acc_user_new = list()
            for rec in _:
                acc_ver = rec.accession_version
                defn = rec.definition
                organism = rec.organism

                prot_acc_user_new.append(acc_ver)

                defn_new = defn.split('[' + organism + ']')[0]
                defn_new = defn_new.lower().strip()
                defn_new = defn_new.replace(' ', '_').replace('-', '_')
                defn_new = defn_new.replace(',', '')
                defn_new = defn_new[0].upper() + defn_new[1:]

                defn_new = acc_ver + '|' + defn_new + '|' + organism
                defn_new = defn_new.replace(' ', '_').replace('-', '_')

                rec.definition = defn_new

            prot_acc_user = prot_acc_user_new
            write_fasta(_, aa_prot_ncbi_file)
    else:
        if ope(aa_prot_ncbi_file):
            osremove(aa_prot_ncbi_file)

    return prot_acc_user
示例#4
0
def filter_queries(ss,
                   aa_queries_file,
                   min_query_length,
                   max_query_length,
                   max_query_identity,
                   vsearch,
                   prot_acc_user,
                   overwrite,
                   logging=True):

    if logging is True:
        print()
        Log.inf('Filtering AA query sequences:', ss)
        Log.msg('min_query_length:', str(min_query_length))
        Log.msg('max_query_length:', str(max_query_length))
        Log.msg('max_query_identity:', str(max_query_identity))

    parsed_fasta_1 = filter_fasta_by_length(aa_queries_file, SEQ_TYPE_AA,
                                            min_query_length, max_query_length)
    tmp1 = aa_queries_file + '_temp1'
    tmp2 = aa_queries_file + '_temp2'
    for rec in parsed_fasta_1:
        rec.seq.gc_code = 1
        rec.seq = rec.seq.untranslate()
    write_fasta(parsed_fasta_1, tmp1)
    run_cluster_fast(vsearch, max_query_identity, tmp1, tmp2)
    parsed_fasta_2 = read_fasta(tmp2, SEQ_TYPE_DNA, parse_def=True)
    prot_acc_user_new = list()
    for rec in parsed_fasta_2:
        rec.seq.gc_code = 1
        rec.seq = rec.seq.translate()
        acc = rec.accession_version
        if acc in prot_acc_user:
            prot_acc_user_new.append(acc)

    if overwrite is True:
        write_fasta(parsed_fasta_2, aa_queries_file, prepend_acc=True)

    osremove(tmp1)
    osremove(tmp2)

    return prot_acc_user_new
示例#5
0
def run_tblastn_on_assemblies(ss, assemblies, aa_queries_file, tblastn,
                              dir_prj_assmbl_blast_results, blast_2_evalue,
                              blast_2_max_hsps, blast_2_qcov_hsp_perc,
                              blast_2_best_hit_overhang,
                              blast_2_best_hit_score_edge,
                              blast_2_max_target_seqs, threads, dir_cache_prj,
                              dir_prj_ips):

    if len(assemblies) > 0:
        print()
        Log.inf('Running BLAST on assemblies:', ss)
        if tblastn is None:
            Log.err('tblastn is not available. Cannot continue. Exiting.')
            exit(0)
    else:
        Log.wrn('There are no assemblies. Nothing to do, stopping.')
        exit(0)

    cache_file = opj(dir_cache_prj, 'blast_2_settings_cache__' + ss)

    pickled = dict()
    settings = {'blast_2_evalue': blast_2_evalue,
                'blast_2_max_hsps': blast_2_max_hsps,
                'blast_2_qcov_hsp_perc': blast_2_qcov_hsp_perc,
                'blast_2_best_hit_overhang': blast_2_best_hit_overhang,
                'blast_2_best_hit_score_edge': blast_2_best_hit_score_edge,
                'blast_2_max_target_seqs': blast_2_max_target_seqs,
                'queries': seq_records_to_dict(
                    read_fasta(aa_queries_file, SEQ_TYPE_AA))}

    Log.msg('evalue:', str(blast_2_evalue))
    Log.msg('max_hsps:', str(blast_2_max_hsps))
    Log.msg('qcov_hsp_perc:', str(blast_2_qcov_hsp_perc))
    Log.msg('best_hit_overhang:', str(blast_2_best_hit_overhang))
    Log.msg('best_hit_score_edge:', str(blast_2_best_hit_score_edge))
    Log.msg('max_target_seqs:', str(blast_2_max_target_seqs))
    print()

    for a in assemblies:

        assmbl_src = a['src']
        assmbl_name = a['name']

        if assmbl_src != 'user_fasta':
            if assmbl_name.endswith('__' + ss):
                assmbl_name = assmbl_name.replace('__' + ss, '')
            else:
                continue

        assmbl_blast_db_path = a['blast_db_path']
        assmbl_genetic_code = a['gc_id']

        ips_json_dump_path = opj(dir_prj_ips, assmbl_name + '_ann_ips__' + ss +
                                 '.json')

        _ = opj(dir_prj_assmbl_blast_results, assmbl_name + '__' + ss + '.tsv')

        if ope(_) and ope(cache_file):
            with open(cache_file, 'rb') as f:
                pickled = pickle.load(f)

        if ope(_) and pickled == settings:
            # Log.msg('The provided BLAST settings and query sequences did '
            #         'not change since the previous run.')
            Log.msg('BLAST results already exist:', assmbl_name)

        else:
            Log.msg('Running tblastn on: ' + assmbl_name, ss)

            if ope(ips_json_dump_path):
                osremove(ips_json_dump_path)

            run_blast(exec_file=tblastn,
                      task='tblastn',
                      threads=threads,
                      db_path=assmbl_blast_db_path,
                      queries_file=aa_queries_file,
                      out_file=_,
                      evalue=blast_2_evalue,
                      max_hsps=blast_2_max_hsps,
                      qcov_hsp_perc=blast_2_qcov_hsp_perc,
                      best_hit_overhang=blast_2_best_hit_overhang,
                      best_hit_score_edge=blast_2_best_hit_score_edge,
                      max_target_seqs=blast_2_max_target_seqs,
                      db_genetic_code=assmbl_genetic_code,
                      out_cols=BLST_RES_COLS_2)

        a['blast_hits_aa__' + ss] = parse_blast_results_file(_, BLST_RES_COLS_2)

    with open(cache_file, 'wb') as f:
        pickle.dump(settings, f, protocol=PICKLE_PROTOCOL)
示例#6
0
文件: __main__.py 项目: muti99/kakapo
def main():
    """Run the script."""
    # Prepare initial logger (before we know the log file path) --------------
    prj_log_file_suffix = time_stamp() + '.log'
    log_stream = StringIO()

    Log.set_colors(COLORS)
    Log.set_file(log_stream)
    Log.set_write(True)

    # Prepare configuration directory ----------------------------------------
    if ope(DIR_CFG):
        Log.inf('Found configuration directory:', DIR_CFG)
    else:
        Log.wrn('Creating configuration directory:', DIR_CFG)
        make_dirs(DIR_CFG)

    print()

    # Check for dependencies -------------------------------------------------
    Log.inf('Checking for dependencies.')
    make_dirs(DIR_DEP)
    make_dirs(DIR_KRK)
    seqtk = deps.dep_check_seqtk(DIR_DEP, FORCE_DEPS)
    trimmomatic, adapters = deps.dep_check_trimmomatic(DIR_DEP)
    fasterq_dump = deps.dep_check_sra_toolkit(DIR_DEP, OS_ID, DIST_ID,
                                              DEBIAN_DISTS, REDHAT_DISTS,
                                              FORCE_DEPS)
    makeblastdb, _, tblastn = deps.dep_check_blast(DIR_DEP, OS_ID, DIST_ID,
                                                   DEBIAN_DISTS, REDHAT_DISTS,
                                                   FORCE_DEPS)
    vsearch = deps.dep_check_vsearch(DIR_DEP, OS_ID, DIST_ID, DEBIAN_DISTS,
                                     REDHAT_DISTS, FORCE_DEPS)
    spades = deps.dep_check_spades(DIR_DEP, OS_ID, FORCE_DEPS)
    bowtie2, bowtie2_build = deps.dep_check_bowtie2(DIR_DEP, OS_ID, FORCE_DEPS)
    rcorrector = deps.dep_check_rcorrector(DIR_DEP, FORCE_DEPS)
    kraken2, kraken2_build = deps.dep_check_kraken2(DIR_DEP, OS_ID,
                                                    RELEASE_NAME, FORCE_DEPS)

    print()

    kraken2_dbs = deps.dnld_kraken2_dbs(DIR_KRK)

    if INSTALL_DEPS is True or DNLD_KRAKEN_DBS is True:
        exit(0)

    print()

    # Initialize NCBI taxonomy database --------------------------------------
    tax = Taxonomy()
    if tax.is_initialized() is False:
        tax.init(data_dir_path=DIR_TAX, logger=Log)
        print()

    # Parse configuration file -----------------------------------------------
    Log.inf('Reading configuration file:', CONFIG_FILE_PATH)
    _ = config_file_parse(CONFIG_FILE_PATH, tax)

    allow_no_stop_cod = _['allow_no_stop_cod']
    allow_no_strt_cod = _['allow_no_strt_cod']
    allow_non_aug = _['allow_non_aug']

    blast_1_evalue = _['blast_1_evalue']
    blast_1_max_hsps = _['blast_1_max_hsps']
    blast_1_qcov_hsp_perc = _['blast_1_qcov_hsp_perc']
    blast_1_best_hit_overhang = _['blast_1_best_hit_overhang']
    blast_1_best_hit_score_edge = _['blast_1_best_hit_score_edge']
    blast_1_max_target_seqs = _['blast_1_max_target_seqs']

    blast_2_evalue = _['blast_2_evalue']
    blast_2_max_hsps = _['blast_2_max_hsps']
    blast_2_qcov_hsp_perc = _['blast_2_qcov_hsp_perc']
    blast_2_best_hit_overhang = _['blast_2_best_hit_overhang']
    blast_2_best_hit_score_edge = _['blast_2_best_hit_score_edge']
    blast_2_max_target_seqs = _['blast_2_max_target_seqs']

    dir_out = _['output_directory']
    email = _['email']
    requery_after = _['requery_after']
    fq_pe = _['fq_pe']
    fq_se = _['fq_se']
    should_run_rcorrector = _['should_run_rcorrector']
    should_run_ipr = _['should_run_ipr']
    bt2_order = _['bt2_order']
    kraken_confidence = _['kraken_confidence']
    krkn_order = _['krkn_order']
    prepend_assmbl = _['prepend_assmbl']
    prj_name = _['project_name']
    sras = _['sras']
    tax_group = _['tax_group']
    # tax_group_name = _['tax_group_name']
    tax_ids_user = _['tax_ids']
    user_assemblies = _['assmbl']

    print()

    # Parse search strategies file -------------------------------------------
    if SS_FILE_PATH is not None:
        Log.inf('Reading search strategies file:', SS_FILE_PATH)
        sss = ss_file_parse(SS_FILE_PATH)
    else:
        Log.wrn('Search strategies file was not provided.\n' +
                'Will process reads, assemblies and then stop.')
        sss = dict()

    print()

    # Create output directory ------------------------------------------------
    if dir_out is not None:
        if ope(dir_out):
            Log.inf('Found output directory:', dir_out)
        else:
            Log.wrn('Creating output directory:', dir_out)
            make_dirs(dir_out)

    print()

    # Write Kakapo version information to the output directory ---------------
    version_file = opj(dir_out, 'kakapo_version.txt')
    if ope(version_file):
        with open(version_file, 'r') as f:
            version_prev = f.read().strip()
            if __version__ != version_prev:
                Log.wrn('The output directory contains data produced by a ' +
                        'different version of Kakapo: ' + version_prev +
                        '.\nThe currently running version is: ' + __version__ +
                        '.\n' +
                        'Delete "kakapo_version.txt" file located in the ' +
                        'output directory if you would like to continue.')
                exit(0)

    with open(version_file, 'w') as f:
        f.write(__version__)

    # Create subdirectories in the output directory --------------------------
    _ = prepare_output_directories(dir_out, prj_name)

    dir_temp = _['dir_temp']
    dir_cache_pfam_acc = _['dir_cache_pfam_acc']
    dir_cache_fq_minlen = _['dir_cache_fq_minlen']
    dir_cache_prj = _['dir_cache_prj']
    dir_cache_refseqs = _['dir_cache_refseqs']
    dir_prj_logs = _['dir_prj_logs']
    dir_prj_queries = _['dir_prj_queries']
    dir_fq_data = _['dir_fq_data']
    dir_fq_cor_data = _['dir_fq_cor_data']
    dir_fq_trim_data = _['dir_fq_trim_data']
    dir_fq_filter_bt2_data = _['dir_fq_filter_bt2_data']
    dir_fq_filter_krkn2_data = _['dir_fq_filter_krkn2_data']
    dir_fa_trim_data = _['dir_fa_trim_data']
    dir_blast_fa_trim = _['dir_blast_fa_trim']
    dir_prj_blast_results_fa_trim = _['dir_prj_blast_results_fa_trim']
    dir_prj_vsearch_results_fa_trim = _['dir_prj_vsearch_results_fa_trim']
    dir_prj_spades_assemblies = _['dir_prj_spades_assemblies']
    dir_prj_blast_assmbl = _['dir_prj_blast_assmbl']
    dir_prj_assmbl_blast_results = _['dir_prj_assmbl_blast_results']
    dir_prj_transcripts = _['dir_prj_transcripts']
    dir_prj_ips = _['dir_prj_ips']
    dir_prj_transcripts_combined = _['dir_prj_transcripts_combined']

    # Prepare logger ---------------------------------------------------------
    prj_log_file = opj(dir_prj_logs, prj_name + '_' + prj_log_file_suffix)
    with open(prj_log_file, 'w') as f:
        f.write(SCRIPT_INFO.strip() + '\n\n' + log_stream.getvalue())

    Log.set_colors(COLORS)
    Log.set_file(prj_log_file)
    Log.set_write(True)

    log_stream.close()

    # Resolve descending taxonomy nodes --------------------------------------
    tax_ids = tax.all_descending_taxids_for_taxids([tax_group])

    # Pfam uniprot accessions ------------------------------------------------
    pfam_uniprot_acc = OrderedDict()
    for ss in sss:
        pfam_acc = sss[ss]['pfam_families']
        pfam_uniprot_acc[ss] = pfam_uniprot_accessions(ss, pfam_acc, tax_ids,
                                                       dir_cache_pfam_acc)

    # Download Pfam uniprot sequences if needed ------------------------------
    aa_uniprot_files = OrderedDict()
    for ss in sss:
        aa_uniprot_files[ss] = opj(dir_prj_queries,
                                   'aa_uniprot__' + ss + '.fasta')
        # ToDo: add support for the requery_after parameter.
        dnld_pfam_uniprot_seqs(ss, pfam_uniprot_acc[ss], aa_uniprot_files[ss],
                               dir_cache_prj)

    # User provided entrez query ---------------------------------------------
    prot_acc_user_from_query = OrderedDict()
    for ss in sss:
        entrez_queries = sss[ss]['entrez_search_queries']
        prot_acc_user_from_query[ss] = user_entrez_search(
            ss, entrez_queries, dir_cache_prj, requery_after)

    # User provided protein accessions ---------------------------------------
    prot_acc_user = OrderedDict()
    for ss in sss:
        print()
        prot_acc_all = sorted(
            set(sss[ss]['ncbi_accessions_aa'] + prot_acc_user_from_query[ss]))
        prot_acc_user[ss] = user_protein_accessions(ss, prot_acc_all,
                                                    dir_cache_prj, tax)

    # Download from NCBI if needed -------------------------------------------
    aa_prot_ncbi_files = OrderedDict()
    for ss in sss:
        aa_prot_ncbi_files[ss] = opj(dir_prj_queries,
                                     'aa_prot_ncbi__' + ss + '.fasta')
        prot_acc_user[ss] = dnld_prot_seqs(ss, prot_acc_user[ss],
                                           aa_prot_ncbi_files[ss],
                                           dir_cache_prj)

    # User provided protein sequences ----------------------------------------
    aa_prot_user_files = OrderedDict()
    for ss in sss:
        user_queries = sss[ss]['fasta_files_aa']
        aa_prot_user_files[ss] = opj(dir_prj_queries,
                                     'aa_prot_user__' + ss + '.fasta')
        user_aa_fasta(ss, user_queries, aa_prot_user_files[ss])

    # Combine all AA queries -------------------------------------------------
    print()
    aa_queries_files = OrderedDict()
    for ss in sss:
        aa_queries_files[ss] = opj(dir_prj_queries, 'aa_all__' + ss + '.fasta')
        combine_aa_fasta(ss, [
            aa_uniprot_files[ss], aa_prot_ncbi_files[ss],
            aa_prot_user_files[ss]
        ], aa_queries_files[ss])

    # Filter AA queries ------------------------------------------------------
    prot_acc_user_filtered = OrderedDict()
    for ss in sss:
        min_query_length = sss[ss]['min_query_length']
        max_query_length = sss[ss]['max_query_length']
        max_query_identity = sss[ss]['max_query_identity']

        # Dereplicate all queries
        filter_queries(ss,
                       aa_queries_files[ss],
                       min_query_length,
                       max_query_length,
                       max_query_identity,
                       vsearch,
                       prot_acc_user[ss],
                       overwrite=True)

        # Dereplicate only NCBI queries. CDS for these will be downloaded
        # later for reference.
        if ope(aa_prot_ncbi_files[ss]):
            prot_acc_user_filtered[ss] = filter_queries(ss,
                                                        aa_prot_ncbi_files[ss],
                                                        min_query_length,
                                                        max_query_length,
                                                        max_query_identity,
                                                        vsearch,
                                                        prot_acc_user[ss],
                                                        overwrite=False,
                                                        logging=False)

    # Download SRA run metadata if needed ------------------------------------
    sra_runs_info, sras_acceptable = dnld_sra_info(sras, dir_cache_prj)

    # Download SRA run FASTQ files if needed ---------------------------------
    x, y, z = dnld_sra_fastq_files(sras_acceptable, sra_runs_info, dir_fq_data,
                                   fasterq_dump, THREADS, dir_temp)

    se_fastq_files_sra = x
    pe_fastq_files_sra = y
    sra_runs_info = z

    # User provided FASTQ files ----------------------------------------------
    se_fastq_files_usr, pe_fastq_files_usr = user_fastq_files(fq_se, fq_pe)

    # Collate FASTQ file info ------------------------------------------------
    se_fastq_files = se_fastq_files_sra.copy()
    se_fastq_files.update(se_fastq_files_usr)
    pe_fastq_files = pe_fastq_files_sra.copy()
    pe_fastq_files.update(pe_fastq_files_usr)

    def gc_tt(k, d, tax):
        taxid = d[k]['tax_id']

        gc = tax.genetic_code_for_taxid(taxid)

        d[k]['gc_id'] = gc
        d[k]['gc_tt'] = TranslationTable(gc)

        gc_mito = None
        tt_mito = None

        gc_plastid = None
        tt_plastid = None

        if tax.is_eukaryote(taxid) is True:
            gc_mito = tax.mito_genetic_code_for_taxid(taxid)
            if gc_mito != '0':
                tt_mito = TranslationTable(gc_mito)

            if tax.contains_plastid(taxid) is True:
                gc_plastid = tax.plastid_genetic_code_for_taxid(taxid)
                if gc_plastid != '0':
                    tt_plastid = TranslationTable(gc_plastid)

        d[k]['gc_id_mito'] = gc_mito
        d[k]['gc_tt_mito'] = tt_mito

        d[k]['gc_id_plastid'] = gc_plastid
        d[k]['gc_tt_plastid'] = tt_plastid

    for se in se_fastq_files:
        gc_tt(se, se_fastq_files, tax)

    for pe in pe_fastq_files:
        gc_tt(pe, pe_fastq_files, tax)

    # Minimum acceptable read length -----------------------------------------
    min_accept_read_len(se_fastq_files, pe_fastq_files, dir_temp,
                        dir_cache_fq_minlen, vsearch)

    # Run Rcorrector ---------------------------------------------------------
    run_rcorrector(se_fastq_files, pe_fastq_files, dir_fq_cor_data, rcorrector,
                   THREADS, dir_temp, should_run_rcorrector)

    # File name patterns -----------------------------------------------------
    a, b, c, d, e = file_name_patterns()

    pe_trim_fq_file_patterns = a
    pe_trim_fa_file_patterns = b
    pe_blast_db_file_patterns = c
    pe_blast_results_file_patterns = d
    pe_vsearch_results_file_patterns = e

    # Run Trimmomatic --------------------------------------------------------
    run_trimmomatic(se_fastq_files, pe_fastq_files, dir_fq_trim_data,
                    trimmomatic, adapters, pe_trim_fq_file_patterns, THREADS)

    # Run Bowtie 2 -----------------------------------------------------------
    run_bt2_fq(se_fastq_files, pe_fastq_files, dir_fq_filter_bt2_data, bowtie2,
               bowtie2_build, THREADS, dir_temp, bt2_order,
               pe_trim_fq_file_patterns, tax, dir_cache_refseqs)

    # Run Kraken2 ------------------------------------------------------------
    run_kraken2(krkn_order, kraken2_dbs, se_fastq_files, pe_fastq_files,
                dir_fq_filter_krkn2_data, kraken_confidence, kraken2, THREADS,
                dir_temp, pe_trim_fq_file_patterns)

    se_fastq_files = OrderedDict(se_fastq_files)
    pe_fastq_files = OrderedDict(pe_fastq_files)

    se_fastq_files = OrderedDict(
        sorted(se_fastq_files.items(), key=lambda x: x[1]['filter_path_fq']))

    pe_fastq_files = OrderedDict(
        sorted(pe_fastq_files.items(), key=lambda x: x[1]['filter_path_fq']))

    # Stop After Filter ------------------------------------------------------
    if STOP_AFTER_FILTER is True:
        Log.wrn('Stopping after Kraken2/Bowtie2 filtering step as requested.')
        exit(0)

    # Convert filtered FASTQ files to FASTA ----------------------------------
    filtered_fq_to_fa(se_fastq_files, pe_fastq_files, dir_fa_trim_data, seqtk,
                      pe_trim_fa_file_patterns)

    # Run makeblastdb on reads -----------------------------------------------
    makeblastdb_fq(se_fastq_files, pe_fastq_files, dir_blast_fa_trim,
                   makeblastdb, pe_blast_db_file_patterns)

    # Check if there are any query sequences.
    any_queries = False
    for ss in sss:
        if stat(aa_queries_files[ss]).st_size == 0:
            continue
        else:
            any_queries = True

    # Run tblastn on reads ---------------------------------------------------
    for ss in sss:
        if stat(aa_queries_files[ss]).st_size == 0:
            continue
        changed_blast_1 = run_tblastn_on_reads(
            se_fastq_files, pe_fastq_files, aa_queries_files[ss], tblastn,
            blast_1_evalue, blast_1_max_hsps, blast_1_qcov_hsp_perc,
            blast_1_best_hit_overhang, blast_1_best_hit_score_edge,
            blast_1_max_target_seqs, dir_prj_blast_results_fa_trim,
            pe_blast_results_file_patterns, ss, THREADS, seqtk, vsearch,
            dir_cache_prj)

        if changed_blast_1 is True:
            if ope(dir_prj_vsearch_results_fa_trim):
                rmtree(dir_prj_vsearch_results_fa_trim)
            if ope(dir_prj_spades_assemblies):
                rmtree(dir_prj_spades_assemblies)
            if ope(dir_prj_blast_assmbl):
                rmtree(dir_prj_blast_assmbl)
            if ope(dir_prj_assmbl_blast_results):
                rmtree(dir_prj_assmbl_blast_results)
            if ope(dir_prj_transcripts):
                rmtree(dir_prj_transcripts)
            if ope(dir_prj_transcripts_combined):
                rmtree(dir_prj_transcripts_combined)

    prepare_output_directories(dir_out, prj_name)

    # Run vsearch on reads ---------------------------------------------------
    # should_run_vsearch = False
    # for ss in sss:
    #     if stat(aa_queries_files[ss]).st_size == 0:
    #         continue
    #     else:
    #         should_run_vsearch = True
    #         break

    # if should_run_vsearch is True:
    #     print()
    #     Log.inf('Checking if Vsearch should be run.')

    for ss in sss:
        if stat(aa_queries_files[ss]).st_size == 0:
            continue
        print()
        Log.inf('Checking if Vsearch should be run:', ss)
        run_vsearch_on_reads(se_fastq_files, pe_fastq_files, vsearch,
                             dir_prj_vsearch_results_fa_trim,
                             pe_vsearch_results_file_patterns, ss, seqtk)

    # Run SPAdes -------------------------------------------------------------
    # should_run_spades = False
    # for ss in sss:
    #     if stat(aa_queries_files[ss]).st_size == 0:
    #         continue
    #     else:
    #         should_run_spades = True
    #         break

    # if should_run_spades is True:
    #     print()
    #     Log.inf('Checking if SPAdes should be run.')

    for ss in sss:
        if stat(aa_queries_files[ss]).st_size == 0:
            for se in se_fastq_files:
                se_fastq_files[se]['spades_assembly' + '__' + ss] = None
            for pe in pe_fastq_files:
                pe_fastq_files[pe]['spades_assembly' + '__' + ss] = None
            continue
        print()
        Log.inf('Checking if SPAdes should be run:', ss)
        run_spades(se_fastq_files, pe_fastq_files, dir_prj_spades_assemblies,
                   spades, dir_temp, ss, THREADS, RAM)

    # Combine SPAdes and user provided assemblies ----------------------------
    assemblies = combine_assemblies(se_fastq_files, pe_fastq_files,
                                    user_assemblies, tax, sss)

    # Run makeblastdb on assemblies  -----------------------------------------
    makeblastdb_assemblies(assemblies, dir_prj_blast_assmbl, makeblastdb)

    if any_queries is False:
        Log.wrn('No query sequences were provided.')

    # Run tblastn on assemblies ----------------------------------------------
    for ss in sss:

        if stat(aa_queries_files[ss]).st_size == 0:
            continue

        should_run_tblastn = False
        for a in assemblies:
            assmbl_src = a['src']
            assmbl_name = a['name']
            if assmbl_src != 'user_fasta':
                if assmbl_name.endswith('__' + ss):
                    should_run_tblastn = True
                    break
            else:
                should_run_tblastn = True
                break

        if should_run_tblastn is False:
            print()
            Log.inf('Will not run BLAST. No transcripts exist:', ss)
            continue

        blast_2_evalue_ss = sss[ss]['blast_2_evalue']
        blast_2_max_hsps_ss = sss[ss]['blast_2_max_hsps']
        blast_2_qcov_hsp_perc_ss = sss[ss]['blast_2_qcov_hsp_perc']
        blast_2_best_hit_overhang_ss = sss[ss]['blast_2_best_hit_overhang']
        blast_2_best_hit_score_edge_ss = sss[ss]['blast_2_best_hit_score_edge']
        blast_2_max_target_seqs_ss = sss[ss]['blast_2_max_target_seqs']

        if blast_2_evalue_ss is None:
            blast_2_evalue_ss = blast_2_evalue
        if blast_2_max_hsps_ss is None:
            blast_2_max_hsps_ss = blast_2_max_hsps
        if blast_2_qcov_hsp_perc_ss is None:
            blast_2_qcov_hsp_perc_ss = blast_2_qcov_hsp_perc
        if blast_2_best_hit_overhang_ss is None:
            blast_2_best_hit_overhang_ss = blast_2_best_hit_overhang
        if blast_2_best_hit_score_edge_ss is None:
            blast_2_best_hit_score_edge_ss = blast_2_best_hit_score_edge
        if blast_2_max_target_seqs_ss is None:
            blast_2_max_target_seqs_ss = blast_2_max_target_seqs

        run_tblastn_on_assemblies(
            ss, assemblies, aa_queries_files[ss], tblastn,
            dir_prj_assmbl_blast_results, blast_2_evalue_ss,
            blast_2_max_hsps_ss, blast_2_qcov_hsp_perc_ss,
            blast_2_best_hit_overhang_ss, blast_2_best_hit_score_edge_ss,
            blast_2_max_target_seqs_ss, THREADS, dir_cache_prj, dir_prj_ips)

    # Prepare BLAST hits for analysis: find ORFs, translate ------------------
    for ss in sss:

        if stat(aa_queries_files[ss]).st_size == 0:
            continue

        min_target_orf_len_ss = sss[ss]['min_target_orf_length']
        max_target_orf_len_ss = sss[ss]['max_target_orf_length']
        organelle = sss[ss]['organelle']

        blast_2_qcov_hsp_perc_ss = sss[ss]['blast_2_qcov_hsp_perc']

        if blast_2_qcov_hsp_perc_ss is None:
            blast_2_qcov_hsp_perc_ss = blast_2_qcov_hsp_perc

        find_orfs_translate(ss, assemblies, dir_prj_transcripts, seqtk,
                            dir_temp, prepend_assmbl, min_target_orf_len_ss,
                            max_target_orf_len_ss, allow_non_aug,
                            allow_no_strt_cod, allow_no_stop_cod, tax,
                            tax_group, tax_ids_user, blast_2_qcov_hsp_perc_ss,
                            organelle)

    # GFF3 files from kakapo results JSON files ------------------------------
    # print()
    for ss in sss:
        if stat(aa_queries_files[ss]).st_size == 0:
            continue
        gff_from_json(ss, assemblies, dir_prj_ips,
                      dir_prj_transcripts_combined, prj_name)

    # Run InterProScan 5 -----------------------------------------------------
    if should_run_ipr is True:
        print()
        ss_names = tuple(sss.keys())

        # Determine the length of printed strings, for better spacing --------
        max_title_a_len = 0
        max_run_id_len = 0
        for a in assemblies:
            for ss in ss_names:
                if 'transcripts_aa_orf_fasta_file__' + ss not in a:
                    continue

                aa_file = a['transcripts_aa_orf_fasta_file__' + ss]

                if aa_file is None:
                    continue

                assmbl_name = a['name']
                run_id = ss + '_' + assmbl_name
                max_run_id_len = max(len(run_id), max_run_id_len)

                seqs = seq_records_to_dict(read_fasta(aa_file, SEQ_TYPE_AA))

                # Filter all ORFs except the first one.
                for seq_def in tuple(seqs.keys()):
                    seq_def_prefix = seq_def.split(' ')[0]
                    if seq_def_prefix.endswith('ORF001'):
                        max_title_a_len = max(len(seq_def_prefix),
                                              max_title_a_len)

        max_title_a_len += 2
        max_run_id_len += 2
        # --------------------------------------------------------------------

        parallel_run_count = min(THREADS, len(ss_names))

        def run_inter_pro_scan_parallel(ss):
            if stat(aa_queries_files[ss]).st_size == 0:
                return

            run_inter_pro_scan(ss, assemblies, email, dir_prj_ips,
                               dir_cache_prj, parallel_run_count,
                               max_title_a_len, max_run_id_len)

            # GFF3 files from kakapo and InterProScan 5 results JSON files
            gff_from_json(ss, assemblies, dir_prj_ips,
                          dir_prj_transcripts_combined, prj_name)

        Parallel(n_jobs=parallel_run_count, verbose=0,
                 require='sharedmem')(delayed(run_inter_pro_scan_parallel)(ss)
                                      for ss in ss_names)

    # Download CDS for NCBI protein queries ----------------------------------
    print()
    prot_cds_ncbi_files = OrderedDict()

    def dnld_cds_for_ncbi_prot_acc_parallel(ss):
        if stat(aa_queries_files[ss]).st_size == 0:
            return

        if ss not in prot_acc_user_filtered:
            return

        prot_cds_ncbi_files[ss] = opj(
            dir_prj_transcripts_combined,
            prj_name + '_ncbi_query_cds__' + ss + '.fasta')

        if len(prot_acc_user_filtered[ss]) > 0:
            dnld_cds_for_ncbi_prot_acc(ss, prot_acc_user_filtered[ss],
                                       prot_cds_ncbi_files[ss], tax,
                                       dir_cache_prj)

    ss_names = tuple(sss.keys())
    Parallel(n_jobs=2, verbose=0, require='sharedmem')(
        delayed(dnld_cds_for_ncbi_prot_acc_parallel)(ss) for ss in ss_names)

    # ------------------------------------------------------------------------

    rmtree(dir_temp)

    # ------------------------------------------------------------------------

    rerun = input('\nRepeat ([y]/n)? ').lower().strip()
    if rerun.startswith('y') or rerun == '':
        print()
        return False
    else:
        print('\nExiting...')
        return True
示例#7
0
def run_spades(se_fastq_files, pe_fastq_files, dir_spades_assemblies,
               spades, dir_temp, ss, threads, ram):

    if len(se_fastq_files) > 0 or len(pe_fastq_files) > 0:
        if spades is None:
            Log.err('SPAdes is not available. Cannot continue. Exiting.')
            exit(0)

    for se in se_fastq_files:
        dir_results = opj(dir_spades_assemblies, se + '__' + ss)
        fq_path = se_fastq_files[se]['vsearch_results_path' + '__' + ss]
        se_fastq_files[se]['spades_assembly' + '__' + ss] = None

        if ope(dir_results):
            Log.msg('SPAdes assembly already exists:', se)
        else:
            make_dirs(dir_results)
            Log.msg('Running SPAdes on:', se)
            run_spades_se(spades,
                          out_dir=dir_results,
                          input_file=fq_path,
                          threads=threads,
                          memory=ram,
                          rna=True)

        assmbl_path = opj(dir_results, 'transcripts.fasta')
        if ope(assmbl_path):
            count = len(read_fasta(assmbl_path, SEQ_TYPE_NT))
            tr_str = ' transcripts.'
            if count == 1:
                tr_str = ' transcript.'
            Log.msg('SPAdes produced ' + str(count) + tr_str, False)
            se_fastq_files[se]['spades_assembly' + '__' + ss] = assmbl_path
        else:
            Log.wrn('SPAdes produced no transcripts.', False)

    for pe in pe_fastq_files:
        dir_results = opj(dir_spades_assemblies, pe + '__' + ss)
        fq_paths = pe_fastq_files[pe]['vsearch_results_path' + '__' + ss]
        pe_fastq_files[pe]['spades_assembly' + '__' + ss] = None

        if ope(dir_results):
            Log.msg('SPAdes assembly already exists:', pe)
        else:
            make_dirs(dir_results)
            Log.msg('Running SPAdes on: ' + pe)

            if osstat(fq_paths[0]).st_size > 0 and \
               osstat(fq_paths[1]).st_size > 0:

                run_spades_pe(spades,
                              out_dir=dir_results,
                              input_files=fq_paths,
                              threads=threads,
                              memory=ram,
                              rna=True)

            else:
                _ = opj(dir_temp, 'temp.fasta')
                combine_text_files(fq_paths, _)
                run_spades_se(spades,
                              out_dir=dir_results,
                              input_file=_,
                              threads=threads,
                              memory=ram,
                              rna=True)
                osremove(_)

        assmbl_path = opj(dir_results, 'transcripts.fasta')
        if ope(assmbl_path):
            count = len(read_fasta(assmbl_path, SEQ_TYPE_NT))
            tr_str = ' transcripts.'
            if count == 1:
                tr_str = ' transcript.'
            Log.msg('SPAdes produced ' + str(count) + tr_str, False)
            pe_fastq_files[pe]['spades_assembly' + '__' + ss] = assmbl_path
        else:
            Log.wrn('SPAdes produced no transcripts.', False)
示例#8
0
def run_inter_pro_scan(ss, assemblies, email, dir_prj_ips, dir_cache_prj,
                       parallel_run_count, max_title_a_len, max_run_id_len):

    delay = 0.25

    for a in assemblies:

        if 'transcripts_aa_orf_fasta_file__' + ss not in a:
            continue

        aa_file = a['transcripts_aa_orf_fasta_file__' + ss]

        if aa_file is None:
            continue

        assmbl_name = a['name']

        json_dump_file_path = opj(dir_prj_ips,
                                  assmbl_name + '_ann_ips__' + ss + '.json')

        if ope(json_dump_file_path):
            Log.inf('InterProScan results for assembly ' + assmbl_name + ', '
                    'search strategy ' + ss + ' have already been downloaded.')
            continue
        else:
            Log.inf('Running InterProScan on translated ' + ss + ' from ' +
                    assmbl_name + '.')

        seqs = seq_records_to_dict(read_fasta(aa_file, SEQ_TYPE_AA))

        # Filter all ORFs except the first one.
        for seq_def in tuple(seqs.keys()):
            seq_def_prefix = seq_def.split(' ')[0]
            if not seq_def_prefix.endswith('ORF001'):
                del seqs[seq_def]

        seqs = OrderedDict(
            sorted(seqs.items(),
                   key=lambda x: x[0].split(' ')[1],
                   reverse=True))

        run_id = ss + '_' + assmbl_name

        _ = opj(dir_cache_prj, 'ips5_cache_done_' + run_id)

        if ope(_):
            with open(_, 'rb') as f:
                jobs = pickle.load(f)

        else:
            jobs = job_runner(email=email,
                              dir_cache=dir_cache_prj,
                              seqs=seqs,
                              run_id=run_id,
                              parallel_run_count=parallel_run_count,
                              max_title_a_len=max_title_a_len,
                              max_run_id_len=max_run_id_len)

            with open(_, 'wb') as f:
                pickle.dump(jobs, f, protocol=PICKLE_PROTOCOL)

        Log.inf('Downloading InterProScan results for ' + ss + ' in ' +
                assmbl_name + '.')

        all_ips_results = {}

        # Nicer printing
        for i, job in enumerate(jobs['finished']):

            job_id = jobs['finished'][job]

            titles_ab = split_seq_defn(job)
            title_a = titles_ab[0]

            progress = round(((i + 1) / len(jobs['finished'])) * 100)
            progress_str = '{:3d}'.format(progress) + '%'

            msg = (' ' * 12 + title_a.ljust(max_title_a_len) +
                   run_id.ljust(max_run_id_len) + progress_str.rjust(4) + ' ' +
                   job_id)

            Log.msg(msg)

            sleep(delay)

            ips_json = result_json(job_id)
            if ips_json is None:
                continue
            # ips_version = ips_json['interproscan-version']
            ips_json = ips_json['results']

            # These fields are set to 'EMBOSS_001' by default
            # Delete them
            del ips_json[0]['xref']

            job_no_def = job.split(' ')[0]

            all_ips_results[job_no_def] = ips_json

        with open(json_dump_file_path, 'w') as f:
            json.dump(all_ips_results, f, sort_keys=True, indent=4)

        # Removes cached jobs file.
        osremove(_)
示例#9
0
def run_tblastn_on_reads(se_fastq_files, pe_fastq_files, aa_queries_file,
                         tblastn, blast_1_evalue, blast_1_max_hsps,
                         blast_1_qcov_hsp_perc, blast_1_best_hit_overhang,
                         blast_1_best_hit_score_edge, blast_1_max_target_seqs,
                         dir_blast_results_fa_trim, fpatt, ss, threads, seqtk,
                         vsearch, dir_cache_prj):

    changed_blast_1 = False

    if len(se_fastq_files) > 0 or len(pe_fastq_files) > 0:
        print()
        Log.inf('Running BLAST on reads:', ss)
        if tblastn is None:
            Log.err('tblastn is not available. Cannot continue. Exiting.')
            exit(0)

        if vsearch is None:
            Log.err('vsearch is not available. Cannot continue. Exiting.')
            exit(0)

        if seqtk is None:
            Log.err('seqtk is not available. Cannot continue. Exiting.')
            exit(0)

    cache_file = opj(dir_cache_prj, 'blast_1_settings_cache__' + ss)

    pickled = dict()
    settings = {
        'blast_1_evalue': blast_1_evalue,
        'blast_1_max_hsps': blast_1_max_hsps,
        'blast_1_qcov_hsp_perc': blast_1_qcov_hsp_perc,
        'blast_1_best_hit_overhang': blast_1_best_hit_overhang,
        'blast_1_best_hit_score_edge': blast_1_best_hit_score_edge,
        'blast_1_max_target_seqs': blast_1_max_target_seqs,
        'queries': seq_records_to_dict(read_fasta(aa_queries_file,
                                                  SEQ_TYPE_AA))
    }

    Log.msg('evalue:', str(blast_1_evalue))
    Log.msg('max_hsps:', str(blast_1_max_hsps))
    Log.msg('qcov_hsp_perc:', str(blast_1_qcov_hsp_perc))
    Log.msg('best_hit_overhang:', str(blast_1_best_hit_overhang))
    Log.msg('best_hit_score_edge:', str(blast_1_best_hit_score_edge))
    Log.msg('max_target_seqs:', str(blast_1_max_target_seqs))
    print()

    # FixMe: Expose in configuration files?
    ident = 0.85

    for se in se_fastq_files:
        dir_results = opj(dir_blast_results_fa_trim, se)
        blast_db_path = se_fastq_files[se]['blast_db_path']
        fq_path = se_fastq_files[se]['filter_path_fq']
        out_f = opj(dir_results, se + '__' + ss + '.txt')
        out_f_fastq = out_f.replace('.txt', '.fastq')
        out_f_fasta = out_f.replace('.txt', '.fasta')
        se_fastq_files[se]['blast_results_path' + '__' + ss] = out_f_fasta
        genetic_code = se_fastq_files[se]['gc_id']

        if ope(out_f_fasta) and ope(cache_file):
            with open(cache_file, 'rb') as f:
                pickled = pickle.load(f)

        if ope(out_f_fasta) and pickled == settings:
            # Log.msg('The provided BLAST settings and query sequences did '
            #         'not change since the previous run.')
            Log.msg('BLAST results already exist:', se)

        else:
            changed_blast_1 = True
            make_dirs(dir_results)
            Log.msg('Running tblastn on: ' + basename(blast_db_path), ss)
            run_blast(exec_file=tblastn,
                      task='tblastn',
                      threads=threads,
                      db_path=blast_db_path,
                      queries_file=aa_queries_file,
                      out_file=out_f,
                      evalue=blast_1_evalue,
                      max_hsps=blast_1_max_hsps,
                      qcov_hsp_perc=blast_1_qcov_hsp_perc,
                      best_hit_overhang=blast_1_best_hit_overhang,
                      best_hit_score_edge=blast_1_best_hit_score_edge,
                      max_target_seqs=blast_1_max_target_seqs,
                      db_genetic_code=genetic_code,
                      out_cols=BLST_RES_COLS_1)

            Log.inf('Extracting unique BLAST hits using Seqtk:', ss)

            keep_unique_lines_in_file(out_f)

            seqtk_extract_reads(seqtk, fq_path, out_f_fastq, out_f)
            seqtk_fq_to_fa(seqtk, out_f_fastq, out_f_fasta)

            osremove(out_f)
            osremove(out_f_fastq)

            out_f_fasta_temp = out_f_fasta + '_temp'
            copyfile(out_f_fasta, out_f_fasta_temp)
            run_cluster_fast(vsearch, ident, out_f_fasta_temp, out_f_fasta)
            osremove(out_f_fasta_temp)

    for pe in pe_fastq_files:
        dir_results = opj(dir_blast_results_fa_trim, pe)
        blast_db_paths = pe_fastq_files[pe]['blast_db_path']
        fq_paths = pe_fastq_files[pe]['filter_path_fq']
        out_fs = [x.replace('@D@', dir_results) for x in fpatt]
        out_fs = [x.replace('@N@', pe) for x in out_fs]
        out_fs = [x.replace('@Q@', ss) for x in out_fs]
        out_fs_fastq = [x.replace('.txt', '.fastq') for x in out_fs]
        out_fs_fasta = [x.replace('.txt', '.fasta') for x in out_fs]
        out_f_fasta = opj(dir_results, pe + '__' + ss + '.fasta')
        pe_fastq_files[pe]['blast_results_path' + '__' + ss] = out_f_fasta
        genetic_code = pe_fastq_files[pe]['gc_id']

        if ope(out_f_fasta) and ope(cache_file):
            with open(cache_file, 'rb') as f:
                pickled = pickle.load(f)

        if ope(out_f_fasta) and pickled == settings:
            # Log.msg('The provided BLAST settings and query sequences did '
            #         'not change since the previous run.')
            Log.msg('BLAST results already exist:', pe)

        else:
            changed_blast_1 = True
            make_dirs(dir_results)
            pe_trim_files = zip(blast_db_paths, out_fs, fq_paths, out_fs_fastq,
                                out_fs_fasta)
            for x in pe_trim_files:
                Log.msg('Running tblastn on: ' + basename(x[0]), ss)
                run_blast(exec_file=tblastn,
                          task='tblastn',
                          threads=threads,
                          db_path=x[0],
                          queries_file=aa_queries_file,
                          out_file=x[1],
                          evalue=blast_1_evalue,
                          max_hsps=blast_1_max_hsps,
                          qcov_hsp_perc=blast_1_qcov_hsp_perc,
                          best_hit_overhang=blast_1_best_hit_overhang,
                          best_hit_score_edge=blast_1_best_hit_score_edge,
                          max_target_seqs=blast_1_max_target_seqs,
                          db_genetic_code=genetic_code,
                          out_cols=BLST_RES_COLS_1)

                Log.msg('Extracting unique BLAST hits using Seqtk:', ss)

                keep_unique_lines_in_file(x[1])

                seqtk_extract_reads(seqtk, x[2], x[3], x[1])
                seqtk_fq_to_fa(seqtk, x[3], x[4])

                osremove(x[1])
                osremove(x[3])

            combine_text_files(out_fs_fasta, out_f_fasta)

            out_f_fasta_temp = out_f_fasta + '_temp'
            copyfile(out_f_fasta, out_f_fasta_temp)
            run_cluster_fast(vsearch, ident, out_f_fasta_temp, out_f_fasta)
            osremove(out_f_fasta_temp)

            for x in out_fs_fasta:
                osremove(x)

    with open(cache_file, 'wb') as f:
        pickle.dump(settings, f, protocol=PICKLE_PROTOCOL)

    return changed_blast_1