def find_solution(P, T): #test, validation = get_validation_set(P, T, validation_size = 0.33) net = build_feedforward(input_number = len(P[0]), hidden_number = 4, output_number = len(T[0])) #com = build_feedforward_committee(size = 4, input_number = len(P[0]), hidden_number = 6, output_number = len(T[0])) epochs = 1000 testset, valset = get_validation_set(P, T, validation_size = 0.01) print("Training...") net = benchmark(train_evolutionary)(net, testset, valset, 100, random_range = 1) net = benchmark(traingd)(net, testset, valset, epochs, learning_rate = 0.1, block_size = 1) #benchmark(train_committee)(com, train_evolutionary, P, T, 100, random_range = 1) #benchmark(train_committee)(com, traingd, P, T, epochs, learning_rate = 0.1, block_size = 30) #P, T = test Y = net.sim(P) area, best_cut = plotroc(Y, T, 1) plot2d2c(net, P, T, figure = 2, cut = best_cut) #P, T = validation #Y = com.sim(P) #plotroc(Y, T, 2) # print("") # print("Stats for cut = 0.5") # [num_correct_first, num_correct_second, total_performance, num_first, num_second, missed] = stat(Y, T) #save_network(best, "/export/home/jonask/Projects/aNeuralN/ANNs/classification_gdblock20_rocarea" + str(area) + ".ann") #save_network(best, "/export/home/jonask/Projects/aNeuralN/ANNs/classification_genetic_rocarea" + str(area) + ".ann") #save_committee(com, "/export/home/jonask/Projects/aNeuralN/ANNs/classification_gdblock30_rocarea" + str(area) + ".anncom") #save_committee(com, "/export/home/jonask/Projects/aNeuralN/ANNs/classification_genetic_rocarea" + str(area) + ".anncom") plt.show()