def k2lc(epic): """ load k2 light curve """ prefix = epic[:4] id = epic[4:] c = "01" path = "data/c01/{0}00000/{1}".format(prefix, id) end = "kepler_v1.0_lc.fits" file = "{0}/hlsp_everest_k2_llc_{1}-c{2}_{3}".format(path, epic, c, end) x, y = process_data(file) return x, y
# save samples f = h5py.File("%s_samples.h5" % id, "w") data = f.create_dataset("samples", np.shape(sampler.chain)) data[:, :] = np.array(sampler.chain) f.close() # make various plots if plot: with h5py.File("%s_samples.h5" % id, "r") as f: samples = f["samples"][...] mcmc_result = make_plot(samples, xsub, ysub, yerrsub, id, fn, traces=True, tri=True, prediction=True) if __name__ == "__main__": c = "01" epic = "201131793" path = "data/c01/201100000/31793" end = "kepler_v1.0_lc.fits" file = "{0}/hlsp_everest_k2_llc_{1}-c{2}_{3}".format(path, epic, c, end) if os.path.exists(file): x, y = process_data(file) burnin, run, npts, tol = 1000, 100000, 10, .4 # MCMC. max npts is 48 yerr = np.ones_like(y) * 1e-5 interval = 0.02043365 # assume for long cadence recover_injections(id, x, y, yerr, path, burnin, run, interval, tol, npts, nwalkers=12, plot=True) else: print(file, "file not found")