def _get_transform(self, metadata): input_metadata = metadata['input'] size = input_metadata['size'] space = input_metadata['space'] drange = input_metadata['range'] normalize = input_metadata['normalize'] if size == None: size = 224 if isinstance(size, (list, tuple)): size = size[-1] transform = [ sT.Resize(size), sT.CenterCrop(size), ] if space == 'bgr': transform.append(sT.FlipChannels()) if list(drange) == [0, 1]: transform.append(sT.ToTensor()) elif list(drange) == [0, 255]: transform.append(sT.ToTensor(normalize=False, dtype=torch.float)) else: raise NotImplementedError if normalize is not None: transform.append( sT.Normalize(mean=normalize['mean'], std=normalize['std'])) return sT.Compose(transform)
def main(): car_train_dst = vision.datasets.StanfordCars('../data/StanfordCars', split='train') car_val_dst = vision.datasets.StanfordCars('../data/StanfordCars', split='test') aircraft_train_dst = vision.datasets.FGVCAircraft('../data/FGVCAircraft', split='trainval') aircraft_val_dst = vision.datasets.FGVCAircraft('../data/FGVCAircraft', split='test') car_teacher = vision.models.classification.resnet18(num_classes=196, pretrained=False) aircraft_teacher = vision.models.classification.resnet18(num_classes=102, pretrained=False) student = vision.models.classification.resnet18(num_classes=196 + 102, pretrained=False) car_teacher.load_state_dict(torch.load(args.car_ckpt)) aircraft_teacher.load_state_dict(torch.load(args.aircraft_ckpt)) train_transform = sT.Compose([ sT.RandomResizedCrop(224), sT.RandomHorizontalFlip(), sT.ToTensor(), sT.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) val_transform = sT.Compose([ sT.Resize(256), sT.CenterCrop(224), sT.ToTensor(), sT.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) car_train_dst.transform = aircraft_train_dst.transform = train_transform car_val_dst.transform = aircraft_val_dst.transform = val_transform car_metric = metrics.MetricCompose( metric_dict={ 'car_acc': metrics.Accuracy(attach_to=lambda o, t: (o[:, :196], t)) }) aircraft_metric = metrics.MetricCompose(metric_dict={ 'aircraft_acc': metrics.Accuracy(attach_to=lambda o, t: (o[:, 196:], t)) }) train_dst = torch.utils.data.ConcatDataset( [car_train_dst, aircraft_train_dst]) train_loader = torch.utils.data.DataLoader(train_dst, batch_size=32, shuffle=True, num_workers=4) car_loader = torch.utils.data.DataLoader(car_val_dst, batch_size=32, shuffle=False, num_workers=4) aircraft_loader = torch.utils.data.DataLoader(aircraft_val_dst, batch_size=32, shuffle=False, num_workers=4) car_evaluator = engine.evaluator.BasicEvaluator(car_loader, car_metric) aircraft_evaluator = engine.evaluator.BasicEvaluator( aircraft_loader, aircraft_metric) if args.ckpt is not None: student.load_state_dict(torch.load(args.ckpt)) print("Load student model from %s" % args.ckpt) if args.test_only: results_car = car_evaluator.eval(student) results_aircraft = aircraft_evaluator.eval(student) print("Stanford Cars: %s" % (results_car)) print("FGVC Aircraft: %s" % (results_aircraft)) return TOTAL_ITERS = len(train_loader) * 100 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') optim = torch.optim.Adam(student.parameters(), lr=args.lr, weight_decay=1e-4) sched = torch.optim.lr_scheduler.CosineAnnealingLR(optim, T_max=TOTAL_ITERS) trainer = amalgamation.CommonFeatureAmalgamator( logger=utils.logger.get_logger('cfl'), tb_writer=SummaryWriter(log_dir='run/cfl-%s' % (time.asctime().replace(' ', '_')))) trainer.add_callback( engine.DefaultEvents.AFTER_STEP(every=10), callbacks=callbacks.MetricsLogging(keys=('total_loss', 'loss_kd', 'loss_amal', 'loss_recons', 'lr'))) trainer.add_callback(engine.DefaultEvents.AFTER_EPOCH, callbacks=[ callbacks.EvalAndCkpt(model=student, evaluator=car_evaluator, metric_name='car_acc', ckpt_prefix='cfl_car'), callbacks.EvalAndCkpt( model=student, evaluator=aircraft_evaluator, metric_name='aircraft_acc', ckpt_prefix='cfl_aircraft'), ]) trainer.add_callback( engine.DefaultEvents.AFTER_STEP, callbacks=callbacks.LRSchedulerCallback(schedulers=[sched])) layer_groups = [(student.fc, car_teacher.fc, aircraft_teacher.fc)] layer_channels = [(512, 512, 512)] trainer.setup(student=student, teachers=[car_teacher, aircraft_teacher], layer_groups=layer_groups, layer_channels=layer_channels, dataloader=train_loader, optimizer=optim, device=device, on_layer_input=True, weights=[1., 10., 10.]) trainer.run(start_iter=0, max_iter=TOTAL_ITERS)
def main(): # Pytorch Part if args.dataset == 'stanford_dogs': num_classes = 120 train_dst = vision.datasets.StanfordDogs('data/StanfordDogs', split='train') val_dst = vision.datasets.StanfordDogs('data/StanfordDogs', split='test') elif args.dataset == 'cub200': num_classes = 200 train_dst = vision.datasets.CUB200('data/CUB200', split='train') val_dst = vision.datasets.CUB200('data/CUB200', split='test') elif args.dataset == 'fgvc_aircraft': num_classes = 102 train_dst = vision.datasets.FGVCAircraft('data/FGVCAircraft/', split='trainval') val_dst = vision.datasets.FGVCAircraft('data/FGVCAircraft/', split='test') elif args.dataset == 'stanford_cars': num_classes = 196 train_dst = vision.datasets.StanfordCars('data/StanfordCars/', split='train') val_dst = vision.datasets.StanfordCars('data/StanfordCars/', split='test') else: raise NotImplementedError model = vision.models.classification.resnet18(num_classes=num_classes, pretrained=args.pretrained) train_dst.transform = sT.Compose([ sT.RandomResizedCrop(224), sT.RandomHorizontalFlip(), sT.ToTensor(), sT.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) val_dst.transform = sT.Compose([ sT.Resize(256), sT.CenterCrop(224), sT.ToTensor(), sT.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) train_loader = torch.utils.data.DataLoader(train_dst, batch_size=32, shuffle=True, num_workers=4) val_loader = torch.utils.data.DataLoader(val_dst, batch_size=32, num_workers=4) TOTAL_ITERS = len(train_loader) * args.epochs device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') optim = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4) sched = torch.optim.lr_scheduler.CosineAnnealingLR(optim, T_max=TOTAL_ITERS) # KAE Part # Predefined task & metrics task = kamal.tasks.StandardTask.classification() metric = kamal.tasks.StandardMetrics.classification() # Evaluator and Trainer evaluator = engine.evaluator.BasicEvaluator(val_loader, metric=metric, progress=True) trainer = engine.trainer.BasicTrainer( logger=kamal.utils.logger.get_logger(args.dataset), tb_writer=SummaryWriter( log_dir='run/%s-%s' % (args.dataset, time.asctime().replace(' ', '_')))) # setup trainer trainer.setup(model=model, task=task, dataloader=train_loader, optimizer=optim, device=device) trainer.add_callback(engine.DefaultEvents.AFTER_STEP(every=10), callbacks=callbacks.MetricsLogging(keys=('total_loss', 'lr'))) trainer.add_callback( engine.DefaultEvents.AFTER_STEP, callbacks=callbacks.LRSchedulerCallback(schedulers=[sched])) ckpt_callback = trainer.add_callback(engine.DefaultEvents.AFTER_EPOCH, callbacks=callbacks.EvalAndCkpt( model=model, evaluator=evaluator, metric_name='acc', ckpt_prefix=args.dataset)) trainer.run(start_iter=0, max_iter=TOTAL_ITERS) ckpt_callback.callback.final_ckpt(ckpt_dir='pretrained', add_md5=True)
def main(): car_train_dst = vision.datasets.StanfordCars( '../data/StanfordCars', split='train') car_val_dst = vision.datasets.StanfordCars( '../data/StanfordCars', split='test') aircraft_train_dst = vision.datasets.FGVCAircraft( '../data/FGVCAircraft', split='trainval') aircraft_val_dst = vision.datasets.FGVCAircraft( '../data/FGVCAircraft', split='test') dog_train_dst = vision.datasets.StanfordDogs( '../data/StanfordDogs', split='train') dog_val_dst = vision.datasets.StanfordDogs( '../data/StanfordDogs', split='test') cub_train_dst = vision.datasets.CUB200( '../data/CUB200', split='train') cub_val_dst = vision.datasets.CUB200( '../data/CUB200', split='test') #car_teacher = vision.models.classification.resnet18( num_classes=196, pretrained=False ) #aircraft_teacher = vision.models.classification.resnet18( num_classes=102, pretrained=False ) #dog_teacher = vision.models.classification.resnet18( num_classes=120, pretrained=False ) #cub_teacher = vision.models.classification.resnet18( num_classes=200, pretrained=False ) student = vision.models.classification.resnet18( num_classes=196+102+120+200, pretrained=False ) #car_teacher.load_state_dict( torch.load( args.car_ckpt ) ) #aircraft_teacher.load_state_dict( torch.load( args.aircraft_ckpt ) ) #dog_teacher.load_state_dict( torch.load( args.dog_ckpt ) ) #cub_teacher.load_state_dict( torch.load( args.cub_ckpt ) ) train_transform = sT.Compose( [ sT.RandomResizedCrop(224), sT.RandomHorizontalFlip(), sT.ToTensor(), sT.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) ] ) val_transform = sT.Compose( [ sT.Resize(256), sT.CenterCrop( 224 ), sT.ToTensor(), sT.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) ] ) cub_train_dst.transform = dog_train_dst.transform = car_train_dst.transform = aircraft_train_dst.transform = train_transform cub_val_dst.transform = dog_val_dst.transform = car_val_dst.transform = aircraft_val_dst.transform = val_transform aircraft_train_dst.target_transform = lambda t: t+196 dog_train_dst.target_transform = lambda t: t+196+102 cub_train_dst.target_transform = lambda t: t+196+102+120 car_metric = metrics.MetricCompose(metric_dict={ 'car_acc': metrics.Accuracy(attach_to=lambda o, t: (o[:, :196],t) ) }) aircraft_metric = metrics.MetricCompose(metric_dict={ 'aircraft_acc': metrics.Accuracy(attach_to=lambda o, t: (o[:, 196:196+102],t) ) }) dog_metric = metrics.MetricCompose(metric_dict={ 'dog_acc': metrics.Accuracy(attach_to=lambda o, t: (o[:, 196+102:196+102+120],t) ) }) cub_metric = metrics.MetricCompose(metric_dict={ 'cub_acc': metrics.Accuracy(attach_to=lambda o, t: (o[:, 196+102+120:196+102+120+200],t) ) }) train_dst = torch.utils.data.ConcatDataset( [car_train_dst, aircraft_train_dst, dog_train_dst, cub_train_dst] ) train_loader = torch.utils.data.DataLoader( train_dst, batch_size=32, shuffle=True, num_workers=4 ) car_loader = torch.utils.data.DataLoader( car_val_dst, batch_size=32, shuffle=False, num_workers=2 ) aircraft_loader = torch.utils.data.DataLoader( aircraft_val_dst, batch_size=32, shuffle=False, num_workers=2 ) dog_loader = torch.utils.data.DataLoader( dog_val_dst, batch_size=32, shuffle=False, num_workers=2 ) cub_loader = torch.utils.data.DataLoader( cub_val_dst, batch_size=32, shuffle=False, num_workers=2 ) car_evaluator = engine.evaluator.BasicEvaluator( car_loader, car_metric ) aircraft_evaluator = engine.evaluator.BasicEvaluator( aircraft_loader, aircraft_metric ) dog_evaluator = engine.evaluator.BasicEvaluator( dog_loader, dog_metric ) cub_evaluator = engine.evaluator.BasicEvaluator( cub_loader, cub_metric ) if args.ckpt is not None: student.load_state_dict( torch.load( args.ckpt ) ) print("Load student model from %s"%args.ckpt) if args.test_only: results_car = car_evaluator.eval( student ) results_aircraft = aircraft_evaluator.eval( student ) results_dog = dog_evaluator.eval( student ) results_cub = cub_evaluator.eval( student ) print("Stanford Cars: %s"%( results_car )) print("FGVC Aircraft: %s"%( results_aircraft )) print("Stanford Dogs: %s"%( results_dog )) print("CUB200: %s"%( results_cub )) return TOTAL_ITERS=len(train_loader) * 100 device = torch.device( 'cuda' if torch.cuda.is_available() else 'cpu' ) optim = torch.optim.Adam( student.parameters(), lr=args.lr, weight_decay=1e-4) sched = torch.optim.lr_scheduler.CosineAnnealingLR( optim, T_max=TOTAL_ITERS ) task = tasks.StandardTask.classification() trainer = engine.trainer.BasicTrainer( logger=utils.logger.get_logger('scratch-4'), tb_writer=SummaryWriter( log_dir='run/scratch-4-%s'%( time.asctime().replace( ' ', '_' ) ) ) ) trainer.add_callback( engine.DefaultEvents.AFTER_STEP(every=10), callbacks=callbacks.MetricsLogging(keys=('total_loss', 'lr'))) trainer.add_callback( engine.DefaultEvents.AFTER_EPOCH, callbacks=[ callbacks.EvalAndCkpt(model=student, evaluator=car_evaluator, metric_name='car_acc', ckpt_prefix='cfl_car'), callbacks.EvalAndCkpt(model=student, evaluator=aircraft_evaluator, metric_name='aircraft_acc', ckpt_prefix='cfl_aircraft'), callbacks.EvalAndCkpt(model=student, evaluator=dog_evaluator, metric_name='dog_acc', ckpt_prefix='cfl_dog'), callbacks.EvalAndCkpt(model=student, evaluator=cub_evaluator, metric_name='cub_acc', ckpt_prefix='cfl_cub'), ] ) trainer.add_callback( engine.DefaultEvents.AFTER_STEP, callbacks=callbacks.LRSchedulerCallback(schedulers=[sched])) trainer.setup( model=student, task=task, dataloader=train_loader, optimizer=optim, device=device ) trainer.run(start_iter=0, max_iter=TOTAL_ITERS)