def trianglemesh_to_pointcloud(mesh: kaolin.rep.Mesh, num_points: int): r""" Converts passed mesh to a pointcloud Args: mesh (kaolin.rep.Mesh): mesh to convert num_points (int):number of points in converted point cloud Returns: (torch.Tensor): converted point cloud Example: >>> mesh = kal.TriangleMesh.from_obj('object.obj') >>> points = kal.conversions.trianglemesh_to_pointcloud(mesh, 10) >>> points tensor([[ 0.0524, 0.0039, -0.0111], [-0.1995, 0.2999, 0.0408], [-0.1921, -0.0268, 0.1811], [ 0.1292, 0.0039, 0.2030], [-0.1859, 0.1764, 0.0168], [-0.1749, 0.1515, -0.0925], [ 0.1990, 0.0039, -0.0083], [ 0.2173, -0.1285, -0.2248], [-0.1916, -0.2143, 0.2064], [-0.1935, 0.2401, 0.1003]]) >>> points.shape torch.Size([10, 3]) """ points, face_choices = mesh.sample(num_points) return points, face_choices
def trianglemesh_to_sdf(mesh: kaolin.rep.Mesh, num_points: int = 10000): r""" Converts mesh to a SDF function Args: mesh (kaolin.rep.Mesh): mesh to convert. num_points (int): number of points to sample on surface of the mesh. Returns: sdf: a signed distance function Example: >>> mesh = kal.TriangleMesh.from_obj('object.obj') >>> sdf = kal.conversions.trianglemesh_to_sdf(mesh) >>> points = torch.rand(100,3) >>> distances = sdf(points) """ surface_points, _ = mesh.sample(num_points) def eval_query(query): distances = directed_distance(query, surface_points, mean=False) occ_points = kal.rep.SDF.check_sign(mesh, query) if torch.is_tensor(occ_points): occ_points = occ_points.cpu().numpy()[0] distances[np.where(occ_points)] *= -1 return distances return eval_query
def trianglemesh_to_voxelgrid(mesh: kaolin.rep.Mesh, resolution: int, normalize: bool = True, vertex_offset: float = 0.): r""" Converts mesh to a voxel model of a given resolution Args: mesh (kaolin.rep.Mesh): mesh to convert resolution (int): desired dresolution of generated voxel array normalize (bool): Determines whether to normalize vertices vertex_offset (float): Offset applied to all vertices after normalizing. Returns: voxels (torch.Tensor): voxel array of desired resolution Example: >>> mesh = kal.TriangleMesh.from_obj('model.obj') >>> voxel = kal.conversions.trianglemesh_to_voxelgrid(mesh, 32) >>> voxel.shape """ mesh = kal.rep.Mesh.from_tensors(mesh.vertices.clone(), mesh.faces.clone()) if normalize: verts_max = mesh.vertices.max() verts_min = mesh.vertices.min() mesh.vertices = (mesh.vertices - verts_min) / (verts_max - verts_min) mesh.vertices = mesh.vertices + vertex_offset points = mesh.vertices smallest_side = (1. / resolution)**2 if mesh.faces.shape[-1] == 4: tri_faces_1 = torch.cat((mesh.faces[:, :2], mesh.faces[:, 3:]), dim=1) tri_faces_2 = torch.cat((mesh.faces[:, :1], mesh.faces[:, 2:]), dim=1) faces = torch.cat((tri_faces_1, tri_faces_2)) else: faces = mesh.faces.clone() v1 = torch.index_select(mesh.vertices, 0, faces[:, 0]) v2 = torch.index_select(mesh.vertices, 0, faces[:, 1]) v3 = torch.index_select(mesh.vertices, 0, faces[:, 2]) while True: side_1 = (torch.abs(v1 - v2)**2).sum(dim=1).unsqueeze(1) side_2 = (torch.abs(v2 - v3)**2).sum(dim=1).unsqueeze(1) side_3 = (torch.abs(v3 - v1)**2).sum(dim=1).unsqueeze(1) sides = torch.cat((side_1, side_2, side_3), dim=1) sides = sides.max(dim=1)[0] keep = sides > smallest_side if keep.sum() == 0: break v1 = v1[keep] v2 = v2[keep] v3 = v3[keep] del (side_1, side_2, side_3, keep, sides) v4 = (v1 + v3) / 2. v5 = (v1 + v2) / 2. v6 = (v2 + v3) / 2. points = torch.cat((points, v4, v5, v6)) vertex_set = [v1, v2, v3, v4, v5, v6] new_traingles = [[0, 3, 4], [4, 1, 5], [4, 3, 5], [3, 2, 5]] new_verts = [] for i in range(4): for j in range(3): if i == 0: new_verts.append(vertex_set[new_traingles[i][j]]) else: new_verts[j] = torch.cat( (new_verts[j], vertex_set[new_traingles[i][j]])) v1, v2, v3 = new_verts del (v4, v5, v6, vertex_set, new_verts) del (v1, v2, v3) voxel = torch.zeros((resolution, resolution, resolution)) points = (points * (resolution - 1)).long() points = torch.split(points.permute(1, 0), 1, dim=0) points = [m.unsqueeze(0) for m in points] voxel[points] = 1 return voxel