示例#1
0
def fit_gauss(x, y):

    """
    fitting a normal distribution on a given data
    Input:  x   --- a list of the bin
            y   --- a list of the count
    Output: amp --- amp of the a normal distribution
            cent--- center of the normal distribution
            width--- width of the normal distribution

    """
    nx = numpy.array(x)
    ny = numpy.array(y)
    ne = numpy.ones(len(ny))
#
#--- we need to give an initial guess
#
    ymax = numpy.max(ny)
    cest  = find_center(x, y)
    p0 = [ymax, cest, 10, 0]

    fitobj = kmpfit.Fitter(residuals=residualsG, data=(nx,ny,ne))
    fitobj.fit(params0=p0)
    [amp, cent, width, floor] = fitobj.params

    return [cent, width, amp]
    def setUp(self):
        #   Pearson's data retrieved from http://www.astro.rug.nl/software/kapteyn/kmpfittutorial.html#fitting-data-when-both-variables-have-uncertainties
        x = np.array([0.0, 0.9, 1.8, 2.6, 3.3, 4.4, 5.2, 6.1, 6.5, 7.4])
        y = np.array([5.9, 5.4, 4.4, 4.6, 3.5, 3.7, 2.8, 2.8, 2.4, 1.5])
        wy = np.array([1, 1.8, 4, 8, 20, 20, 70, 70, 100, 500])
        erry = 1 / np.sqrt(wy)
        N = len(x)

        #       weights in x are ignored in linearfit
        #       wx = np.array([1000.0,1000,500,800,200,80,60,20,1.8,1.0])
        #       errx = 1/np.sqrt(wx)

        # dependent variables
        M = np.mat(y)

        #       diagonal covariance matrix of dependent variables
        S = np.mat(np.diag(wy))

        # matrix of independent variables, here only ones
        C = np.mat(np.vstack((np.ones(len(x)), x)))

        # initialise object
        res = linearfit.LinearFit(M, S, C)

        # do the fit
        res.fit()

        print("\n\n======== Results linearfit =========")
        res.display_results(precision=10)
        res.display_correlations()

        self.result = res

        #         optional comparison with kapteyn (nonlinear fitting) package
        if 0:
            from kapteyn import kmpfit

            def model(p, x):
                a, b = p
                return a + b * x

            def residuals2(p, data):
                # Residuals function for data with errors in y only
                a, b = p
                x, y, ey = data
                wi = np.where(ey == 0.0, 0.0, 1.0 / ey)
                d = wi * (y - model(p, x))
                return d

            # Prepare fit routine
            beta0 = [5.0, 1.0]  # Initial estimates

            # Prepare fit routine
            fitobj2 = kmpfit.Fitter(residuals=residuals2, data=(x, y, erry))
            fitobj2.fit(params0=beta0)
            print("\n\n======== Results kmpfit =========")
            print("Fitted parameters:      ", fitobj2.params)
            print("Covariance errors:      ", fitobj2.xerror)
            print("Standard errors         ", fitobj2.stderr)
            print("Reduced Chi^2:          ", fitobj2.rchi2_min)
示例#3
0
def fit_pmodel(hist, ymax, xpos, hwidth):
    """
    for a given histgram data, fit a gaussian distribution
    input:  hist    --- hist data
            ymax    --- initial guess height of the profile
            xpos    --- initial guess center postion
            hwidth  --- initial guess sigma

    Output: amp     --- estimated height of the profile
            cent    --- estimated center postion
            width   --- estimated sigma
            floor   --- estimated floor level
    """

    start = int(xpos) - hwidth
    stop = int(xpos) + hwidth

    ybin = hist[start:stop]
    xbin = [x for x in range(start, stop)]
    err = numpy.ones(2 * hwidth)

    p0 = [ymax, xpos, 10, 0]
    fitobj = kmpfit.Fitter(residuals=residualsG, data=(xbin, ybin, err))
    fitobj.fit(params0=p0)
    [amp, cent, width, floor] = fitobj.params
    return [amp, cent, width, floor]
示例#4
0
def fit_poly(x, y, nterms):
    """
    estimate polynomial fitting coefficients
    Input:      x      --- independent variable (array)
                y      --- dependent variable (array)
                nterms --- degree of polynomial fit
    Output:     fitobj.params --- array of polynomial fit coefficient

    Note: for the detail on kmpfit, read: 
                http://www.astro.rug.nl/software/kapteyn/kmpfittutorial.html#a-basic-example
    """
    #
    #--- make sure that the arrays are numpyed
    #
    d = numpy.array(x)
    v = numpy.array(y)
    #
    #--- set the initial estimate of the coefficients, all "0" is fine
    #
    paraminitial = [0.0 for i in range(0, nterms)]
    #
    #--- call kmfit
    #
    fitobj = kmpfit.Fitter(residuals=residuals, data=(d, v))

    try:
        fitobj.fit(params0=paraminitial)
    except:
        print "Something wrong with kmpfit fit"
        raise SystemExit

    return fitobj.params
示例#5
0
def getHistory(sDay,nAhead,x0,hWeek):
    nLin = sDay.shape[0] + nAhead
    nFit = sDay.shape[0] if int(x0['obs_time']) <= 14 else int(x0['obs_time'])
    sDay['hist'] = sp.interpolate.interp1d(hWeek.t,hWeek.y,kind="cubic")(sDay['t'])
    histNorm = sDay['hist'].mean()
    sDay['hist'] = ( (sDay['hist']-sDay['hist'].min())/(sDay['hist'].max()-sDay['hist'].min()) + .5)*x0['hist_adj']
    fitD = np.array([sDay.t.tail(nFit),sDay.y.tail(nFit)])
    fitobj = kmpfit.Fitter(residuals=ser_residuals,data=fitD)
    fitobj.fit(params0=x0['poly'])
    x0['poly'] = fitobj.params
    sDay['stat'] = (sDay['y']-ser_poly(x0['poly'],sDay.t))
    sDay['stat'].ix[0:(sDay.shape[0]-nFit)] = sDay['stat'][sDay.shape[0]-nFit]
    t_test = np.linspace(sDay['t'][0],sDay['t'][sDay.shape[0]-1]+sDay.t[nAhead]-sDay.t[0],nLin)
    predS = pd.DataFrame({'t':t_test},index=[sDay.index[0]+datetime.timedelta(days=x) for x in range(nLin)])
    predS['y'] = sDay.y
    predS['hist'] = sp.interpolate.interp1d(hWeek.t,hWeek.y,kind="cubic")(predS['t'])
    predS['hist'] = ( (predS['hist']-predS['hist'].min())/(predS['hist'].max()-predS['hist'].min())*x0['hist_adj'] + .5)
    predS['trend'] = ser_poly(x0['poly'],predS['t'])
    predS['trend'].ix[0:(sDay.shape[0]-nFit)] = predS['trend'][sDay.shape[0]-nFit]
    predS['pred'] = 0
    predS['lsq'] = 0
    # plt.plot(sDay.t,sDay.y,'-',label='series')
    # plt.plot(sDay.t,sDay['hist'],'-',label='hist')
    # plt.plot(hWeek.t,hWeek.y,label='week')
    # plt.plot(sDay.t,sDay['stat'],'-',label='stat')
    # plt.plot(predS.t,predS['trend'],'-',label='fit')
    # plt.legend()
    # plt.show()
    return predS, x0
示例#6
0
def FocusRunResults():
    data = np.loadtxt(directory_prefix + 'bahtinov_results/Focusrun/' +
                      today_utc_date + '/Results/FocusResults.txt')
    image = data[:, 0]
    defocus = data[:, 1]
    focus = data[:, 2]
    focuserr = data[:, 3]
    xp = np.linspace(min(defocus), max(defocus), 100)
    z = np.polyfit(defocus, focus, 1)
    fitobj = kmpfit.Fitter(residuals=functions.linfitresiduals,
                           data=(defocus, focus, focuserr),
                           xtol=1e-12,
                           gtol=1e-12)
    fitobj.fit(params0=z)
    print "\n=================== Results linear fit best defocus M2 ==================="
    print "Fitted parameters:      ", fitobj.params
    print "Covariance errors:      ", fitobj.xerror
    print "Standard errors:        ", fitobj.stderr
    print "Chi^2 min:              ", round(fitobj.chi2_min, 2)
    print "Reduced Chi^2:          ", round(fitobj.rchi2_min, 2)
    print "Iterations:             ", fitobj.niter
    print "Number of free pars.:   ", fitobj.nfree
    print "Degrees of freedom      ", fitobj.dof
    print "Status Message:         ", fitobj.message

    dfdp = [1, xp]
    confprob = 95.0
    ydummy, upperband, lowerband = functions.confidence_band(
        xp, dfdp, confprob, fitobj, functions.linfit)
    verts = zip(xp, lowerband) + zip(xp[::-1], upperband[::-1])
    bestfocus = -fitobj.params[0] / fitobj.params[1]
    bestfocusvar = bestfocus**2 * (
        (fitobj.stderr[0] / fitobj.params[0])**2 +
        (fitobj.stderr[1] / fitobj.params[1])**2 - 2 *
        (fitobj.covar[0, 1] / (fitobj.params[0] * fitobj.params[1])))
    fig, axis = plt.subplots()
    axis.xaxis.set_minor_locator(AutoMinorLocator())
    axis.yaxis.set_minor_locator(AutoMinorLocator())
    axis.errorbar(defocus, focus, yerr=focuserr, fmt='ko')
    axis.annotate('Best offset M2 = %.2f $\pm$ %.3f $\\mu m$' %
                  (bestfocus, bestfocusvar**.5),
                  xy=(0, 1),
                  xycoords='axes fraction',
                  fontsize=12,
                  horizontalalignment='left',
                  verticalalignment='top')
    axis.plot(xp,
              functions.linfit(fitobj.params, xp),
              color='r',
              ls='--',
              lw=2)
    axis.set_title('Focus run M2 vs calculated axial defocus', fontsize=14)
    axis.set_xlabel('Piston M2 [$\mu m$]')
    axis.set_ylabel('Calculated axial defocus [$\mu m$]')
    axis.set_xlim(-5, 205)
    axis.grid(True)
    #axis.legend(loc=4,fancybox=True, shadow=True, ncol=4, borderpad=1.01)
    fig.tight_layout()
    fig.savefig(directory_prefix + 'bahtinov_results/Focusrun/' +
                today_utc_date + '/Results/Focusrun_defocus.png')
示例#7
0
def fit_model(x, y, err, p0, detail='no'):
    """
    fitting a model to a given data
    Input:      data        --- input data list of lists [xdata, ydata, error]
                p0          --- initial guess of the parameters in a list
                detail      --- if you want to print out a detail fitting profile, set "yes'. Default: 'no'
    Output:     fitting parameter [noarmalization, center, sigma, zero level]
    """
    #
    #--- convert the data to numpy array
    #
    d = numpy.array(x)
    v = numpy.array(y)
    err = numpy.array(err)
    #
    #--- fitting routine starts
    #
    fitobj = kmpfit.Fitter(residuals=my_residuals,
                           deriv=my_derivs,
                           data=(d, v, err))

    try:
        fitobj.fit(params0=p0)
    except Exception, mes:
        print "Something wrong with fit:", mes
        raise SystemExit
示例#8
0
def gamma_fit(x, y, a0, b0, m0):
    """
    fitting gammaf profile to the data
    Input:      x   --- independent var
                y   --- dependent var
    Output: [a, b]
    """

    N = len(y)
    x = numpy.array(x)
    y = numpy.array(y)
    err = numpy.ones(N)
    #
    #--- initial guess
    #

    p0 = [a0, b0, m0]

    #
    #--- fit the model
    #
    try:
        fitter = kmpfit.Fitter(residuals=residualsG, data=(x, y, err))
        #fitter.parinfo = [{}, {}, {'fixed':True}]  # Take zero level fixed in fit
        fitter.fit(params0=p0)

        a, b, h = fitter.params
    except:
        a, b, h = p0

    return [a, b, h]
示例#9
0
def voigt_fit(x, y):
    """
    fitting voigt profile to the data
    Input:      x   --- independent var
                y   --- dependent var
    Output: [nu_0, hwhm, amp, alphaD, alphaL, nu_0, I, a_back, b_back]
            nu_0 --- central postion
            hwhm    --- HWHM
            amp     --- amp
            alphaD  --- doppler alpha
            alphaL  --- lorntz  alpha
            I       --- area under profile
            a_back  --- base line intercept
            b_back  --- base line slope

    """

    N = len(y)
    x = numpy.array(x)
    y = numpy.array(y)
    err = numpy.ones(N)
    #
    #--- initial guess
    #
    A = max(y)
    alphaD = 0.5
    alphaL = 0.5
    a = 0
    b = 0
    nu_0 = find_center(x, y)

    p0 = [alphaD, alphaL, nu_0, A, a, b]

    #
    #--- fit the model
    #
    fitter = kmpfit.Fitter(residuals=residualsV, data=(x, y, err))
    fitter.parinfo = [{}, {}, {}, {}, {}, {
        'fixed': True
    }]  # Take zero level fixed in fit
    fitter.fit(params0=p0)

    alphaD, alphaL, nu_0, I, a_back, b_back = fitter.params

    #
    #--- compute width: HWHM
    #
    c1 = 1.0692
    c2 = 0.86639
    hwhm = 0.5 * (c1 * alphaL + numpy.sqrt(c2 * alphaL**2 + 4 * alphaD**2))
    hwhm = 2.0 * hwhm
    #
    #--- compute amp
    #
    f = numpy.sqrt(ln2)
    Y = alphaL / alphaD * f
    amp = I / alphaD * numpy.sqrt(ln2 / numpy.pi) * voigt(0, Y)

    return [nu_0, hwhm, amp, alphaD, alphaL, I, a_back, b_back]
def fit_line(paramsinit, x, y, err, type):
    """
    kmpfit calling function to fit the lines on data
    input: paramsinit   --- initial guess for the parameters
           x            --- a list of x data
           y            --- a list of y data
           err          --- a list of y error
           type         --- linear or exp:
    output: two parameters (a, b) are returned
    """
    sx   = []
    sy   = []
    se   = []
    avg  = mean(y)
    stdp = std(y)
    bot  = avg - 3.0 * stdp
    top  = avg + 3.0 * stdp
    i    = 0
    for val in y:
        if (val >= bot) and (val <= top):
            sx.append(x[i])
            sy.append(y[i])
            se.append(err[i])
        i += 1
#
#--- make sure that the arrays are numpyed
#
    d = numpy.array(sx)
    v = numpy.array(sy)
    e = numpy.array(se)

    if type == 'linear':
#
#--- linear fit
#
        fitobj = kmpfit.Fitter(residuals=linear_res, data=(d, v, e))
        fitobj.fit(params0 = paramsinit)
    else:
#
#--- exp fit
#
        fitobj = kmpfit.Fitter(residuals=exp_res, data=(d, v, e))
        fitobj.fit(params0 = paramsinit)

    return fitobj.params
示例#11
0
def fit_polinom_to_center(fdata, start, stop, action, grating, catg):
    """
    fitting a 5th degree polinomial to the data and find differences
    input:  fdata   --- a list of arrays of time and data
            start   --- starting time in seconds from 1998.1.1
            stop    --- stopping time in seconds from 1998.1.1
            action  --- movement
            grating --- grating
            cag     --- catogry (roll/pitch/yaw)
    output: estimates   --- a list of model fitted data
            diff_data   --- a list of difference between themodel and the data
            f_time      --- a list of time for the selected data period
            sec1,sec2,sec3  --- list of [avg, std]  of three sections
    """
    #
    #--- set fitting range
    #
    tdiff = stop - start
    dstart = -1.5 * tdiff
    dstop = 1.5 * tdiff
    #
    #--- limit data to the fitting range
    #
    t_array = fdata[0]
    v_array = fdata[1]
    index = [(t_array > dstart) & (t_array < dstop)]
    f_time = t_array[index]
    f_data = v_array[index]
    #
    #--- fit the data
    #
    paraminitial = [0.0 for i in range(0, 5)]

    fitobj = kmpfit.Fitter(residuals=residuals, data=(f_time, f_data))

    try:
        fitobj.fit(params0=paraminitial)
    except:
        print "Something wrong with kmpfit fit"
        return False
#
#--- create lists of data of estimated fitting and deviations
#
    [estimates, diff_data] = compute_difference(f_time, f_data, fitobj)
    #
    #--- find avg and std of three sections
    #
    [sec1, sec2, sec3] = compute_avg_of_three_sections(f_time, diff_data,
                                                       start, stop)
    #
    #--- write out the polinomial fitting result
    #
    write_poli_fitting_result(fitobj, start, stop, action, grating, catg)

    return [estimates, diff_data, f_time, sec1, sec2, sec3]
示例#12
0
def fit_model(x, y, err, p0, detail='no'):
    """
    fitting a model to a given data
    Input:  data    --- input data list of lists [xdata, ydata, error]
            p0      --- initial guess of the parameters in a list
            detail  --- if you want to print out a detail fitting profile, set "yes'. Default: 'no'
    Output: fitting parameter [noarmalization, center, sigma, zero level]
    """
    #
    #--- convert the data to numpy array
    #
    d = numpy.array(x)
    v = numpy.array(y)
    err = numpy.array(err)
    #
    #--- fitting routine starts
    #
    fitobj = kmpfit.Fitter(residuals=my_residuals,
                           deriv=my_derivs,
                           data=(d, v, err))

    try:
        fitobj.fit(params0=p0)
    except Exception as mes:
        print("Something wrong with fit:", mes)
        raise SystemExit
#
#--- if detail fitting profile is asked, print it out
#
    if detail == 'yes':
        line = "\n\n======== Results kmpfit with explicit partial derivatives =========" + "\n"
        line = line + "Params:        " + str(fitobj.params) + "\n"
        line = line + "Errors from covariance matrix         : " + str(
            fitobj.xerror) + "\n"
        line = line + "Uncertainties assuming reduced Chi^2=1: " + str(
            fitobj.stderr) + "\n"
        line = line + "Chi^2 min:     " + str(fitobj.chi2_min) + "\n"
        line = line + "Reduced Chi^2: " + str(fitobj.rchi2_min) + "\n"
        line = line + "Iterations:    " + str(fitobj.niter) + "\n"
        line = line + "Function ev:   " + str(fitobj.nfev) + "\n"
        line = line + "Status:        " + str(fitobj.status) + "\n"
        line = line + "Status Message:" + str(fitobj.message) + "\n"
        line = line + "Covariance:\n" + str(fitobj.covar) + "\n"

        f = open('./kmpfit_info', 'w')
        f.write(line)
        f.close()

    return fitobj.params
def kmp_wrap(center, max_cnt, drange, xdata, ydata, dcnt):
    """
    a wrapper function to use kmpfit
    input: center   --- gaussian center position
           max_cnt  --- gaussinan peak count
           drange   --- width of the data collecting area center +/- drange
           xdata    --- a list of the full sim position data
           ydata    --- a list of the full sim count data
           dcnt     --- a number of data points
    output: [center position, count rate, width of the peak]
    """
    freturn = [-999, -999, -999, -999, -999, -999]
    xval = []
    yval = []
    chk = 0

    rmin = int(center - drange)
    rmax = int(center + drange)

    for i in range(0, dcnt):
        if xdata[i] >= rmin and xdata[i] <= rmax:
            xval.append(xdata[i])
            yval.append(ydata[i])
            chk += 1
#
#--- kmpfit, least squares fitting from kapteyn package
#
    if chk > 0 and max_cnt > 0:

        try:
            paramsinitial = (center, max_cnt, 10)
            fitobj = kmpfit.Fitter(residuals=residuals, data=(xval, yval))
            fitobj.fit(params0=paramsinitial)

            [pos, count, width] = fitobj.params
            [perr, cerr, werr] = fitobj.xerror

            return [pos, count, width, perr, cerr, werr]

        except:
            return freturn

    else:
        return freturn
示例#14
0
def kmp_wrap(center, max_cnt, drange, xdata, ydata, dcnt):
    '''
    a wrapper function to use kmpfit
    input: center: gaussian center position
           max_cnt: gaussinan peak count
           drange:  width of the data collecting area center +/- drange
           xdata:  full sim position data
           ydata:  full sim count data
           dcnt:   number of data points
    output: [center position, count rate, width of the peak]

    '''

    xval = []
    yval = []
    chk = 0

    rmin = int(center - drange)
    rmax = int(center + drange)

    for i in range(0, dcnt):
        if xdata[i] >= rmin and xdata[i] <= rmax:
            xval.append(xdata[i])
            yval.append(ydata[i])
            chk += 1
#
#--- kmpfit, least squares fitting from kapteyn package
#
    if chk > 0 and max_cnt > 0:
        paramsinitial = (center, max_cnt, 10)
        fitobj = kmpfit.Fitter(residuals=residuals, data=(xval, yval))
        fitobj.fit(params0=paramsinitial)

        [pos, count, width] = fitobj.params

    else:
        pos = -999
        count = -999
        width = -999

    return [pos, count, width]
示例#15
0
def fitZshape(x,y,err) :

    A = 0.5
    alphaD = 1.4
    alphaL = 2.5/2
    a = 0.001
    b = 0
    nu_0 = 91.2
    p0 = [alphaD, alphaL, nu_0, A, a, b]

    # Do the fit
    fitter = kmpfit.Fitter(residuals=residualsV, data=(x,y,err))
  #  fitter.parinfo = [{}, {}, {}, {}, {}, {'fixed':True}]  # Take zero level fixed in fit
    fitter.parinfo = [{}, {'fixed':True}, {}, {}, {}, {}] 
    fitter.fit(params0=p0)

    print "\n========= Fit results Voigt profile =========="
    print "Initial params:", fitter.params0
    print "Params:        ", fitter.params
    print "Iterations:    ", fitter.niter
    print "Function ev:   ", fitter.nfev 
    print "Uncertainties: ", fitter.xerror
    print "dof:           ", fitter.dof
    print "chi^2, rchi2:  ", fitter.chi2_min, fitter.rchi2_min
    print "stderr:        ", fitter.stderr   
    print "Status:        ", fitter.status
    
    alphaD, alphaL, nu_0, I, a_back, b_back = fitter.params
    c1 = 1.0692
    c2 = 0.86639
    hwhm = 0.5*(c1*alphaL+np.sqrt(c2*alphaL**2+4*alphaD**2))
    print "\nFWHM Voigt profile:     ", 2*hwhm
    f = np.sqrt(ln2)
    Y = alphaL/alphaD * f
    amp = I/alphaD*np.sqrt(ln2/np.pi)*voigt(0,Y)
    print "Amplitude Voigt profile:", amp
    print "Area under profile:     ", I
    return fitter.params
示例#16
0
# Here one can experiment with errors on the measured values
err0 = numpy.zeros(N0) + normal(190.0, 1.0, N0)  # Mean 200, sigma 1

# Hubble space telescope 2009: H0 = 74.2 +- 3.6 (km/s)/Mpc.
H0_last = 74.2

# Filter possible outliers based on Chauvenet's criterion
# Use the current literature value of the Hubble constant
# to create a line which is used as a base to calculate
# deviations. These offsets are distributed normally and we can
# apply Chauvenet's criterion to filter outliers.

print("\nPre filtering:")
print("=================")
paramsinitial = [70.0]
fitobj = kmpfit.Fitter(residuals=residuals, data=(d0, v0, err0))
fitobj.fit(params0=paramsinitial)
H0_fit0 = fitobj.params[0]
H0_fit0_delta = fitobj.stderr
print("H0 with unfiltered data: ", H0_fit0)

# If you want to know which data would have been excluded if
# you had a perfect fit with H0 = Ho_last, then use: mean = H0_last*d
mean = H0_fit0 * d0
# Use expression below for unit weighting. Otherwise use
# the errors in the data as standard deviations.
# stdv = numpy.sqrt(((v0-mean)**2).sum()/(N0))
stdv = err0
filter = chauvenet(d0, v0, mean=mean, stdv=stdv)
print("Excluded data based on Chauvenet's criterion:",
      list(zip(d0[~filter], v0[~filter])))
示例#17
0
def vertprofile(datafnme=(u'', ),
                work_dir=(u'', ),
                header=(1, ),
                struct=([1, 2, 3, 4], ),
                labelx=u'to be completed',
                labely=u'to be completed',
                labeldata=(u'Data', ),
                rangex=None,
                rangey=None,
                statstypes=[0, 1, 2, 3],
                confprob=95.0,
                fontsz=10,
                fontleg=9,
                output='graph'):
    """
	This code is to compute regressions for points with their error
      using different regression methods
	
	USAGE
		>>>from vertprof import vertprofile
		>>>vertprofile(datafnme = u'', work_dir = u'',  header = 1, struct = [1,2,3,4],
						labelx = 'to be completed', labely = 'to be completed', rangex = None, rangey = None,
						statstypes = [0,1,2,3], confprob = 95.0,
						fontsz = 10, fontleg = 9,
						output = 'graph')
		
	INPUTS
		To use options or inputs, you need to set them as
		vertprof(option_name = option_value, [...])
	
		1. work_dir: tuple (i.e. (u'data1 workdir',u'data2 workdir',...) of the Working directory(-ies) (local path)
		             for each dataset
				ex: work_dir = (u'Purgatorio3/',) (note the (,) structure if there is only one dataset to plot
				Default None
		2. datafnme: tuple (i.e. (u'data1 name ',u'data2 name',...) of the name(s) of text data file
	           should be in the form : Alt - Age - Age_Error
				ex: datafnme = 'Purgatorio3.txt'
		3. header: tuple of the number of lines of the header in the data for each dataset
				ex: header = (1,) (Default)
		4. struct: tuple of the structure of the data for each dataset
	         Struct = ([Xdata, Xerr, Ydata, Yerr],)
	         where Xdata, Xerr, Ydata, Yerr give their respective columns in the data file
	         If one of the data type do not exist, set the corresponding column to NONE
			ex : struct = ([1,2,3,4],) (Default)
		5. output: name of output
				ex: output = 'graph' (Default)
		6. labelx/labely: label x-axis/y-axis
				ex: labelx = 'Exposure age (ka)'
					labely ='Distance to the top of the scarp (m)'
		7. labeldata: tuple (i.e. (u'data1 label',u'data2 label',...) with the name of the type of data
		              for each dataset plotted
		              default = (u'Data',)
		8. rangex/rangey: Set the x- and y-range
	               Depends on type of data
					ex: rangex = [0,8]
						rangey = [10,4] (in that case, the axis is inverted)
		9. statstypes: Type(s) of the stats to plot
					0 = kmpfit effective variance
					1 = kmpfit unweighted
					2 = Williamson
					3 = Cl relative weighting in X &/or Y
					ex: statstype = [0,1,2,3] (Default)
						statstype = [1,3]
		10. fontsz: labels fontsize
				ex: fontsz = 10 (Default)
		11. fontleg: legend fontsize
				ex: fontleg = 9 (Default)
		12. confprob: the confidence interval probabilty (in %)
				ex: confprob = 95.0 (Default)

	OUTPUTS
		For each dataset, the module outputs a pdf graph, and a text file with the stats outputs for each method asked
	
	CONTACT
		If needed, do not hesitate to contact the author. 
		Please, use https://isterre.fr/spip.php?page=contact&id_auteur=303

	LICENCE
		This package is licenced with `CCby-nc-sa` (https://creativecommons.org/licenses/by-nc-sa/2.0/)
	"""

    # set colors
    # For the moment, only for 6 datasets, it should be enough
    colors = ['b', 'darkorange', 'peru', 'black', 'darkviolet', 'green']

    # initiate variables
    erry = errx = a_will = b_will = verts = fitobj = fitobj2 = fitobj3 = None
    # Tuples to lists
    datafnme = list(datafnme)
    work_dir = list(work_dir)
    header = list(header)
    struct = list(struct)
    labeldata = list(labeldata)

    # Initiate the plotting
    plt.rc(u'font', size=fontsz)
    #plt.rc(u'title', size = fontsz)
    plt.rc(u'legend', fontsize=fontleg)
    # Open figure
    plt.figure(1).clear
    #plt.add_subplot(1,1,1, aspect=1, adjustable=u'datalim')

    # If the minima input data are not given print the help file
    if not datafnme:
        help(vertprofile)
        raise TypeError(color.RED + u'ERROR : ' + color.END +
                        u'Name of Input file not given...')

    # check if the length of work_dir, struct and labeldata are equal to the length of datafnme
    # If not, copy the first record to the others, with a warning
    for item in [work_dir, header, struct, labeldata]:
        if len(datafnme) != len(item):
            warnings.warn(
                color.YELLOW + u"\nWARNING : " + color.END +
                u"work_dir, header, struct and/or labeldata may be the same for all dataset"
            )
            #item = (item[0])
            for i_data in range(1, len(datafnme)):
                item = item.append(item[0])
                #item[i_data] = item[0]

    # do a loop on the number of dataset to plot
    for i_data in range(0, len(datafnme)):
        # check if the working directory exists, if not, create it
        if work_dir[i_data].strip():
            if work_dir[i_data][-1:] != u'/':
                work_dir[i_data] = work_dir[i_data] + u'/'
            if path.exists(work_dir[i_data]) == False:
                os.mkdir(work_dir[i_data])
            else:
                warnings.warn(
                    color.YELLOW + u"\nWARNING : " + color.END +
                    u"Working directory already exists and will be erased\n")
            # Check if the file exists in the main folder
            #       if not, ckeck in the working folder
            #          if only in the working folder, copy it to the main folder
            if not path.isfile(datafnme[i_data]):
                if not path.isfile(work_dir[i_data] + datafnme[i_data]):
                    #sys.exit(color.RED + u"ERROR : " + color.END + u"Input file %s does not exist..." % datafnme)
                    raise NameError(color.RED + u"ERROR : " + color.END +
                                    u"Input file %s does not exist..." %
                                    datafnme[i_data])
                else:
                    copyfile(work_dir[i_data] + datafnme[i_data],
                             datafnme[i_data])
            if not path.isfile(work_dir[i_data] + datafnme[i_data]):
                copyfile(datafnme[i_data], work_dir[i_data] + datafnme[i_data])
            datapath = work_dir[i_data] + datafnme[i_data]
        else:
            if not path.isfile(work_dir[i_data] + datafnme[i_data]):
                #sys.exit(color.RED + u"ERROR : " + color.END + u"Input file %s does not exist..." % datafnme)
                raise NameError(color.RED + u"ERROR : " + color.END +
                                u"Input file %s does not exist..." %
                                datafnme[i_data])
            else:
                datapath = datafnme[i_data]
                work_dir[i_data] = u''

        # read data
        data = np.loadtxt(datapath, skiprows=header[i_data])

        y = data[:, struct[i_data][0] - 1]
        if struct[i_data][1] != 0 and struct[i_data][1] != None:
            erry = data[:, struct[i_data][1] - 1]
        else:
            erry = 0
        x = data[:, struct[i_data][2] - 1]
        if struct[i_data][3] != 0 and struct[i_data][3] != None:
            errx = data[:, struct[i_data][3] - 1]
        else:
            errx = 0
        N = len(x)

        # Open new file to print the results
        f1w = open(work_dir[i_data] + u'results_' + datafnme[i_data], 'w')
        string = ' '
        print(string)
        f1w.write(string + u"\n")
        string = ' '
        print(string)
        f1w.write(string + u"\n")
        string = ' '
        print(string)
        f1w.write(string + u"\n")
        string = u'             Dataset ' + labeldata[i_data]
        print(color.RED + color.BOLD + string + color.END)
        f1w.write(string + u"\n")
        string = u"Results of weigthed least square from file " + datafnme[
            i_data] + u"\n"
        print(color.RED + color.BOLD + string + color.END)
        f1w.write(string + u"\n")
        string = u"xmax/min = " + str(x.max()) + u", " + str(x.min())
        print(string)
        f1w.write(string + u"\n")
        string = u"ymax/min = " + str(y.max()) + u", " + str(y.min())
        print(string)
        f1w.write(string + u"\n")
        string = u"x/y mean = " + str(x.mean()) + u", " + str(y.mean())
        print(string)
        f1w.write(string + u"\n")

        string = (
            u"\nMethods used are: \n" +
            u"   - kmpfit:  kapteyn method, from " +
            u"https://www.astro.rug.nl/software/kapteyn/kmpfittutorial.html \n"
            + u"              with error on X and Y or Y only or none \n" +
            u"   - ODR: Orthogonal Distance Regression \n" +
            u"   - Williamson: least square fitting with errors in X and Y " +
            u"according to \n" +
            u"                 Williamson (Canadian Journal of Physics, 46, 1845-1847, 1968) \n"
        )
        print(color.CYAN + string + color.END)
        f1w.write(string)

        beta0 = [5.0, 1.0]  # Initial estimates
        if struct[i_data][3] != 0 and struct[i_data][3] != None:
            if struct[i_data][1] != 0 or struct[i_data][1] != None:
                # Prepare fit routine
                fitobj = kmpfit.Fitter(residuals=residuals,
                                       data=(x, y, errx, erry))
                fitobj.fit(params0=beta0)
                string = (
                    u"\n\n======== Results kmpfit: weights for both coordinates ========="
                )
                print(color.BLUE + color.BOLD + string + color.END)
                f1w.write(string + "\n")
                string = (
                    u"Fitted parameters:      " + str(fitobj.params) + u"\n"
                    u"Covariance errors:      " + str(fitobj.xerror) + u"\n"
                    u"Standard errors         " + str(fitobj.stderr) + u"\n"
                    u"Chi^2 min:              " + str(fitobj.chi2_min) + u"\n"
                    u"Reduced Chi^2:          " + str(fitobj.rchi2_min) + u"\n"
                    u"Iterations:             " + str(fitobj.niter))
                print(string)
                f1w.write(string + u"\n")
            else:
                # Prepare fit routine
                fitobj2 = kmpfit.Fitter(residuals=residuals2,
                                        data=(x, y, erry))
                fitobj2.fit(params0=beta0)
                string = (
                    u"\n\n======== Results kmpfit errors in Y only =========")
                print(color.BLUE + color.BOLD + string + color.END)
                f1w.write(string + u"\n")
                string = (
                    u"Fitted parameters:      " + str(fitobj2.params) + u"\n"
                    u"Covariance errors:      " + str(fitobj2.xerror) + u"\n"
                    u"Standard errors         " + str(fitobj2.stderr) + u"\n"
                    u"Chi^2 min:              " + str(fitobj2.chi2_min) + u"\n"
                    u"Reduced Chi^2:          " + str(fitobj2.rchi2_min))
                print(string)
                f1w.write(string)

        # Unweighted (unit weighting)
        fitobj3 = kmpfit.Fitter(residuals=residuals2, data=(x, y, np.ones(N)))
        fitobj3.fit(params0=beta0)
        string = (u"\n\n======== Results kmpfit unit weighting =========")
        print(color.BLUE + color.BOLD + string + color.END)
        f1w.write(string + "\n")
        string = (u"Fitted parameters:      " + str(fitobj3.params) + u"\n"
                  u"Covariance errors:      " + str(fitobj3.xerror) + u"\n"
                  u"Standard errors         " + str(fitobj3.stderr) + u"\n"
                  u"Chi^2 min:              " + str(fitobj3.chi2_min) + u"\n"
                  u"Reduced Chi^2:          " + str(fitobj3.rchi2_min))
        print(string)
        f1w.write(string)

        # Compare result with ODR
        # Create the linear model from statsfuncs
        linear = Model(model)
        if struct[i_data][3] != 0 and struct[i_data][3] != None:
            if struct[i_data][1] != 0 and struct[i_data][1] != None:
                mydata = RealData(x, y, sx=errx, sy=erry)
            else:
                mydata = RealData(x, y, sy=erry)
        else:
            mydata = RealData(x, y)

        myodr = ODR(mydata, linear, beta0=beta0, maxit=5000, sstol=1e-14)
        myoutput = myodr.run()
        string = (u"\n\n======== Results ODR =========")
        print(color.BLUE + color.BOLD + string + color.END)
        f1w.write(string + u"\n")
        string = (u"Fitted parameters:      " + str(myoutput.beta) + u"\n"
                  u"Covariance errors:      " +
                  str(np.sqrt(myoutput.cov_beta.diagonal())) + u"\n"
                  u"Standard errors:        " + str(myoutput.sd_beta) + u"\n"
                  u"Minimum chi^2:          " + str(myoutput.sum_square) +
                  u"\n"
                  u"Minimum (reduced)chi^2: " + str(myoutput.res_var))
        print(string)
        f1w.write(string)

        # Compute Williamson regression
        a_will, b_will, siga, sigb, beta, x_av, x__mean = williamson(
            x, y, errx, erry, struct[i_data], myoutput)

        if struct[i_data][3] != 0 and struct[i_data][3] != None:
            if struct[i_data][1] != 0 and struct[i_data][1] != None:
                chi2 = (residuals(fitobj.params, (x, y, errx, erry))**2).sum()
            else:
                chi2 = (residuals2(fitobj2.params, (x, y, erry))**2).sum()
        else:
            chi2 = (residuals2(fitobj3.params, (x, y, np.ones(N)))**2).sum()

        string = (u"\n\n======== Results Williamson =========")
        print(color.BLUE + color.BOLD + string + color.END)
        f1w.write(string + u"\n")
        string = (u"Average x weighted:     " + str(x_av) + u"\n"
                  u"Average x unweighted:   " + str(x__mean) + u"\n"
                  u"Fitted parameters:      " + u"[" + str(a_will) + u"," +
                  str(b_will) + u"]\n"
                  u"Covariance errors:      " + u"[" + str(siga) + u"," +
                  str(sigb) + u"]\n"
                  u"Minimum chi^2:          " + str(chi2))
        print(string)
        f1w.write(string)

        string = (
            u"\n====================================="
            u"\nPractical results:                     a       +       b     *   x"
        )
        print(color.BLUE + color.BOLD + string + color.END)
        f1w.write(u"\n" + string + u"\n")
        string = (u"kmpfit unweighted:           %13.4f    %13.4f" %
                  (fitobj3.params[0], fitobj3.params[1]))
        print(string)
        f1w.write(string + u"\n")
        string = (u"   Exhumation Rate: %13.4f" % (1 / fitobj3.params[1]))
        print(string)
        f1w.write(string + u"\n")
        string = (u"   Min. Exh. Rate: %13.4f" %
                  (1 / (fitobj3.params[1] - np.sqrt(fitobj3.stderr[1]))))
        print(string)
        f1w.write(string + u"\n")
        string = (u"   Max. Exh. Rate: %13.4f" %
                  (1 / (fitobj3.params[1] + np.sqrt(fitobj3.stderr[1]))))
        print(string)
        f1w.write(string + "\n")
        if struct[i_data][3] != 0 and struct[i_data][3] != None:
            if struct[i_data][1] != 0 and struct[i_data][1] != None:
                string = u"kmpfit effective variance:    %13.4f    %13.4f" % (
                    fitobj.params[0], fitobj.params[1])
                print(string)
                f1w.write(string + u"\n")
                string = (u"   Exhumation Rate: %13.4f" %
                          (1 / fitobj.params[1]))
                print(string)
                f1w.write(string + u"\n")
                string = (u"   Min. Exh. Rate: %13.4f" %
                          (1 / (fitobj.params[1] - np.sqrt(fitobj.stderr[1]))))
                print(string)
                f1w.write(string + u"\n")
                string = (u"   Max. Exh. Rate: %13.4f" %
                          (1 / (fitobj.params[1] + np.sqrt(fitobj.stderr[1]))))
                print(string)
                f1w.write(string + u"\n")
            else:
                string = u"kmpfit weights in Y only:     %13.4f    %13.4f" % (
                    fitobj2.params[0], fitobj2.params[1])
                print(string)
                f1w.write(string + u"\n")
                string = (u"   Exhumation Rate: %13.4f" %
                          (1 / fitobj2.params[1]))
                print(string)
                f1w.write(string + u"\n")
                string = (u"   Min. Exh. Rate: %13.4f" %
                          (1 /
                           (fitobj2.params[1] - np.sqrt(fitobj2.stderr[1]))))
                print(string)
                f1w.write(string + u"\n")
                string = (u"   Max. Exh. Rate: %13.4f" %
                          (1 /
                           (fitobj2.params[1] + np.sqrt(fitobj2.stderr[1]))))
                print(string)
                f1w.write(string + u"\n")
        string = u"ODR:                          %13.4f    %13.4f" % (beta[0],
                                                                      beta[1])
        print(string)
        f1w.write(string + u"\n")
        string = (u"   Exhumation Rate: %13.4f" % (1 / beta[1]))
        print(string)
        f1w.write(string + u"\n")
        string = (u"   Min. Exh. Rate: %13.4f" %
                  (1 / (beta[1] - np.sqrt(myoutput.sd_beta[1]))))
        print(string)
        f1w.write(string + u"\n")
        string = (u"   Max. Exh. Rate: %13.4f" %
                  (1 / (beta[1] + np.sqrt(myoutput.sd_beta[1]))))
        print(string)
        f1w.write(string + u"\n")
        string = u"Williamson:                   %13.4f    %13.4f" % (a_will,
                                                                      b_will)
        print(string)
        f1w.write(string + u"\n")
        string = (u"   Exhumation Rate: %13.4f" % (1 / b_will))
        print(string)
        f1w.write(string + u"\n")
        # For the next lines, not sure that we have to use the chi2 as error...
        string = (u"   Min. Exh. Rate: %13.4f" % (1 / (b_will - chi2)))
        print(string)
        f1w.write(string + u"\n")
        string = (u"   Max. Exh. Rate: %13.4f" % (1 / (b_will + chi2)))
        print(string)
        f1w.write(string + u"\n")
        print(u"\n")

        # calcul of confidence intervals
        dfdp = [1, x, x**2]
        if struct[i_data][3] != 0 and struct[i_data][3] != None:
            if struct[i_data][1] != 0 and struct[i_data][1] != None:
                ydummy, upperband, lowerband = confidence_band(
                    x, dfdp, confprob, fitobj, model)
                labelconf = u"CI (" + str(
                    confprob) + u"%) relative weighting in X & Y"
                if i_data == 0:
                    #string = (u"y = a + b * x with a = %6.4f +/- %6.4f and b = %6.4f +/- %6.4f "
                    #stringl = (u"y_" + labeldata[i_data] + u" = a + b * x with a = %.2f +/- %.2f and b = %.2f +/- %.2f "
                    #stringl = (u" y_" + labeldata[i_data] + u" = a + b * x with a = %.2f +/- %.2f and b = %.2f +/- %.2f "
                    #           %(fitobj.params[0], np.sqrt(fitobj.stderr[0]),
                    #           fitobj.params[1], np.sqrt(fitobj.stderr[1])))
                    stringl = (
                        r" $\mathbf{Y_{%s}} = \mathbf{a} + \mathbf{b} \times \mathbf{X}$ with $\mathbf{a} = %.2f \pm %.2f$ and $\mathbf{b} = %.2f \pm %.2f$ "
                        % (labeldata[i_data], fitobj.params[0],
                           np.sqrt(fitobj.stderr[0]), fitobj.params[1],
                           np.sqrt(fitobj.stderr[1])))
                else:
                    #string = (u"y = a + b * x with a = %6.4f +/- %6.4f and b = %6.4f +/- %6.4f "
                    stringl = stringl + "\n" + (
                        r"$\mathbf{Y_{%s}} = \mathbf{a} + \mathbf{b} \times \mathbf{X}$ with $\mathbf{a} = %.2f \pm %.2f$ and $\mathbf{b} = %.2f \pm %.2f$ "
                        % (labeldata[i_data], fitobj.params[0],
                           np.sqrt(fitobj.stderr[0]), fitobj.params[1],
                           np.sqrt(fitobj.stderr[1])))
            else:
                ydummy, upperband, lowerband = confidence_band(
                    x, dfdp, confprob, fitobj2, model)
                labelconf = u"CI (" + str(
                    confprob) + u"%) relative weighting in Y"
                if i_data == 0:
                    #string = (u"y = a + b * x with a = %6.4f +/- %6.4f and b = %6.4f +/- %6.4f "
                    stringl = (
                        r"$\mathbf{Y_{%s}} = \mathbf{a} + \mathbf{b} \times \mathbf{X}$ with $\mathbf{a} = %.2f \pm %.2f$ and $\mathbf{b} = %.2f \pm %.2f$ "
                        % (labeldata[i_data], fitobj2.params[0],
                           np.sqrt(fitobj2.stderr[0]), fitobj2.params[1],
                           np.sqrt(fitobj2.stderr[1])))

                else:
                    #string = (u"y = a + b * x with a = %6.4f +/- %6.4f and b = %6.4f +/- %6.4f "
                    stringl = stringl + "\n" + (
                        r"$\mathbf{Y_{%s}} = \mathbf{a} + \mathbf{b} \times \mathbf{X}$ with $\mathbf{a} = %.2f \pm %.2f$ and $\mathbf{b} = %.2f \pm %.2f$ "
                        % (labeldata[i_data], fitobj2.params[0],
                           np.sqrt(fitobj2.stderr[0]), fitobj2.params[1],
                           np.sqrt(fitobj2.stderr[1])))
        else:
            ydummy, upperband, lowerband = confidence_band(
                x, dfdp, confprob, fitobj3, model)
            labelconf = u"CI (" + str(confprob) + u"%) with no weighting"
            if i_data == 0:
                #string = (u"y = a + b * x with a = %6.4f +/- %6.4f and b = %6.4f +/- %6.4f "
                stringl = (
                    r"$\mathbf{y_{%s}} = \mathbf{a} + \mathbf{b} \times x$ with $\mathbf{a} = %.2f \pm %.2f$ and $\mathbf{b} = %.2f \pm %.2f$ "
                    % (labeldata[i_data], fitobj3.params[0],
                       np.sqrt(fitobj3.stderr[0]), fitobj3.params[1],
                       np.sqrt(fitobj3.stderr[1])))
            else:
                #string = (u"y = a + b * x with a = %6.4f +/- %6.4f and b = %6.4f +/- %6.4f "
                stringl = stringl + "\n" + (
                    r"$\mathbf{Y_{%s}} = \mathbf{a} + \mathbf{b} \times \mathbf{X}$ with $\mathbf{a} = %.2f \pm %.2f$ and $\mathbf{b} = %.2f \pm %.2f$ "
                    % (labeldata[i_data], fitobj3.params[0],
                       np.sqrt(fitobj3.stderr[0]), fitobj3.params[1],
                       np.sqrt(fitobj3.stderr[1])))
        #verts = zip(x, lowerband) + zip(x[::-1], upperband[::-1])
        # Because we need to invert X and Y for the graph
        verts = list(zip(lowerband, x)) + list(zip(upperband[::-1], x[::-1]))

        # Close output file
        f1w.close()

        #if rangex:
        #	X = np.linspace(rangex[0], rangex[1], 50)
        #else:
        #	d = (x.max() - x.min())/10
        #	X = np.linspace(x.min()-d, x.max()+d, 50)
        #if rangey:
        #	Y = np.linspace(rangey[0], rangey[1], 50)
        #else:
        #	d = (y.max() - y.min())/10
        #	Y = np.linspace(y.min()-d, y.max()+d, 50)
        # Call the plotting function
        #axes = plotgraphreg(struct[i_data], x, y, errx, erry, X, Y,
        axes = plotgraphreg(struct[i_data], x, y, errx, erry, colors[i_data],
                            labeldata[i_data], statstypes, a_will, b_will,
                            verts, confprob, fitobj, fitobj2, fitobj3)

    # Set graph characteristics/attributes
    plt.xlabel(labelx)
    plt.ylabel(labely)
    plt.grid(True)
    plt.title(stringl, size=fontsz)
    # clean the legend from duplicates
    handles, labels = plt.gca().get_legend_handles_labels()
    by_label = OrderedDict(zip(labels, handles))
    plt.legend(by_label.values(), by_label.keys(), loc="best")
    # set the X and Y limits
    if rangex:
        axes.set_xlim([rangex[0], rangex[1]])
    if rangey:
        axes.set_ylim(bottom=rangey[0], top=rangey[1])

    plt.savefig(work_dir[0] + output + u'.pdf')
    plt.close()
示例#18
0
        fr = len(dat2[dat2 <= yy]) / float(n)
        cdfnew.append(fr)
    return numpy.asarray(cdfnew)


# Create data
N = 30
x = numpy.linspace(-5, 10, N)
# Parameters: A, mu, sigma, zerolev
truepars = [10.0, 4.0, 2.5, 0.0]
p0 = [10, 4.5, 0.8, 0]
y = func(truepars, x) + numpy.random.normal(0, 0.8, N)
err = numpy.random.normal(0.0, 0.6, N)

# Do the fit
fitter = kmpfit.Fitter(residuals=residuals, data=(x, y, err))
#fitter.parinfo = [{}, {}, {}, {'fixed':True}]  # Take zero level fixed in fit
fitter.fit(params0=p0)

if (fitter.status <= 0):
    print("Status:  ", fitter.status)
    print('error message = ', fitter.errmsg)
    raise SystemExit

print("\n========= Fit results ==========")
print("Initial params:", fitter.params0)
print("Params:        ", fitter.params)
print("Iterations:    ", fitter.niter)
print("Function ev:   ", fitter.nfev)
print("Uncertainties: ", fitter.xerror)
print("dof:           ", fitter.dof)
示例#19
0
def gauss_hermite_fit(data,
                      p0,
                      plot_op='no',
                      xname='X',
                      yname='Cnts',
                      tname='Voigt Fit',
                      xmin='na',
                      xmax='na',
                      ymin='na',
                      ymax='na',
                      detail='no'):
    """
    control function of Gauss-Hermite fitting
    Input:
            data         --- data list of lists [x, y, err]
            p0 =         --- parameter list: [A1, X1, S1, h31, h41, z01]
                                             A1: area covered
                                             X1: center position
                                             S1:
                                             h31: 
                                             h41:
                                             zo1:
            plot_op     --- if yes, the script will plot. default: no
            xname       --- the name of x axis
            yname       --- the name of y axis
            tname       --- title of the plot
            xmin        --- lower boundary in x of the plot
            xmax        --- upper boundray in x of the plot
            ymin        --- lower boundary in y of the plot
            ymax        --- upper boundray in y of the plot
            detail      --- if yes, it will print fitting profiles. default: no

    Output: param:       [A1, X1, S1, h31, h41, z01, height, center, width, floor]
            if plot is asked:       out.png
            if proflie is asked:    gh_fitting_profile
    """

    x, y, err = data
    #
    #--- convert the list ot numpy array
    #
    x = numpy.array(x)
    y = numpy.array(y)
    err = numpy.array(err)

    #
    #---- Fit the Gaussian model
    #
    [A1, X1, S1, h31, h41, z01] = p0
    pg = [A1, X1, S1,
          z01]  #--- approximate the initial values using GH initial estimates

    fitterG = kmpfit.Fitter(residuals=residualsG, data=(x, y, err))
    fitterG.fit(params0=pg)

    if detail == 'yes':
        line = "\n========= Fit results Gaussian profile ==========\n\n"
        line = line + "Initial params:" + str(fitterG.params0) + "\n"
        line = line + "Params:        " + str(fitterG.params) + "\n"
        line = line + "Iterations:    " + str(fitterG.niter) + "\n"
        line = line + "Function ev:   " + str(fitterG.nfev) + "\n"
        line = line + "Uncertainties: " + str(fitterG.xerror) + "\n"
        line = line + "dof:           " + str(fitterG.dof) + "\n"
        line = line + "chi^2, rchi2:  " + str(fitterG.chi2_min) + ' ' + str(
            fitterG.rchi2_min) + "\n"
        line = line + "stderr:        " + str(fitterG.stderr) + "\n"
        line = line + "Status:        " + str(fitterG.status) + "\n"

        fwhmG = 2 * numpy.sqrt(2 * numpy.log(2)) * fitterG.params[2]
        line = line + "FWHM Gaussian: " + str(fwhmG) + "\n"

    z0G = fitterG.params0[-1]  # Store background
    #
    #--- Fit the Gauss-Hermite model
    #
    #--- Initial estimates for A, xo, s, h3, h4, z0
    #
    fitterGH = kmpfit.Fitter(residuals=residualsGH, data=(x, y, err))
    #   fitterGH.parinfo = [{}, {}, {}, {}, {}]  # Take zero level fixed in fit

    fitterGH.fit(params0=p0)
    if detail == 'yes':
        line = line + "\n\n========= Fit results Gaussian-Hermite profile ==========\n\n"
        line = line + "Initial params:" + str(fitterGH.params0) + "\n"
        line = line + "Params:        " + str(fitterGH.params) + "\n"
        line = line + "Iterations:    " + str(fitterGH.niter) + "\n"
        line = line + "Function ev:   " + str(fitterGH.nfev) + "\n"
        line = line + "Uncertainties: " + str(fitterGH.xerror) + "\n"
        line = line + "dof:           " + str(fitterGH.dof) + "\n"
        line = line + "chi^2, rchi2:  " + str(fitterGH.chi2_min) + ' ' + str(
            fitterGH.rchi2_min) + "\n"
        line = line + "stderr:        " + str(fitterGH.stderr) + "\n"
        line = line + "Status:        " + str(fitterGH.status) + "\n"

        A, x0, s, h3, h4, z0GH = fitterGH.params
        #
        #--- xm, ampmax, area, mean, dispersion, skewness, kurtosis
        #
        res = hermite2gauss(fitterGH.params[:-1], fitterGH.stderr[:-1])

        line = line + "Gauss-Hermite max=%g at x=%g\n" % (res['amplitude'],
                                                          res['xmax'])
        line = line + "Area      :" + str(
            res['area']) + ' ' + str('+-') + ' ' + str(res['d_area']) + "\n"
        line = line + "Mean (X0) :" + str(
            res['mean']) + ' ' + str('+-') + ' ' + str(res['d_mean']) + "\n"
        line = line + "Dispersion:" + str(
            res['dispersion']) + ' ' + str('+-') + ' ' + str(
                res['d_dispersion']) + "\n"
        line = line + "Skewness  :" + str(
            res['skewness']) + ' ' + str('+-') + ' ' + str(
                res['d_skewness']) + "\n"
        line = line + "Kurtosis  :" + str(
            res['kurtosis']) + ' ' + str('+-') + ' ' + str(
                res['d_kurtosis']) + "\n"

        f = open('gh_fitting_profile', 'w')
        f.write(line)
        f.close()
#
#---  Plot the result
#
    if plot_op == 'yes':
        rc('legend', fontsize=6)
        fig = figure()

        frame1 = fig.add_subplot(1, 1, 1)

        if xmax != 'na':
            frame1.set_xlim(xmin=xmin, xmax=xmax, auto=False)
            frame1.set_ylim(ymin=ymin, ymax=ymax, auto=False)

        xd = numpy.linspace(x.min(), x.max(), 500)

        frame1.plot(x, y, 'bo', label="data")

        label = "Model with Gaussian function"
        frame1.plot(xd, funcG(fitterG.params, xd), 'm', ls='--', label=label)

        label = "Model with Gauss-Hermite function"
        frame1.plot(xd, funcGH(fitterGH.params, xd), 'b', label=label)

        frame1.plot(xd, [z0G] * len(xd), "y", ls="-.", label='Background G')
        frame1.plot(xd, [z0GH] * len(xd), "y", ls="--", label='Background G-H')

        frame1.set_xlabel(xname)
        frame1.set_ylabel(yname)

        t = (res['area'], res['mean'], res['dispersion'], res['skewness'],
             res['kurtosis'])
        title = tname + "  GH: $\gamma_{gh}$=%.1f $\mu_{gh}$=%.1f $\sigma_{gh}$ = %.2f $\\xi_1$=%.2f  $\\xi_f$=%.2f" % t
        frame1.set_title(title, fontsize=9)

        frame1.grid(True)
        leg = frame1.legend(loc=1)
        #
        #--- set the size of the plotting area in inch (width: 10.0in, height 5.0in)
        #
        fig = mpl.pyplot.gcf()
        fig.set_size_inches(10.0, 5.0)
        #
        #--- save the plot in png format
        #
        fig.savefig('out.png', format='png', dpi=100)
        #
        #--- returning parameters
        #
        [A1, X1, S1, h31, h41, z01] = fitterGH.params
        [height, center, width, floor] = fitterG.params

    return [A1, X1, S1, h31, h41, z01, height, center, width, floor]
			Before fitting we will sample the chisquare plane to make a first guess of 'p0'. This will be the sample for which χ2 is minimal.
		"""
        Ns = 200

        def chi2(p, *data):
            return np.sum(residuals(p, data)**2)

        prange = ((-np.pi, np.pi), (0, np.pi))
        p0, fval, ϕθ, χ2 = brute(chi2,
                                 ranges=prange,
                                 args=data,
                                 Ns=200,
                                 full_output=True,
                                 workers=-1)

        fitobj = kmpfit.Fitter(residuals)
        fitobj.data = data
        fitobj.params0 = p0
        #we don't impose any limits on the parameter space as that would cause branch cuts
        fitobj.fit()

        #Below we phase shift the results such that -π < ϕ < π and 0 < θ < π.
        #phase shift ϕ
        if fitobj.params[0] < 0:
            N = fitobj.params[0] // -np.pi
            fitobj.params = np.array(
                [fitobj.params[0] + 2 * np.pi * N, fitobj.params[1]])
        elif fitobj.params[0] > 0:
            N = fitobj.params[0] // np.pi
            fitobj.params = np.array(
                [fitobj.params[0] - 2 * np.pi * N, fitobj.params[1]])
示例#21
0
a_pearson = y_av - b_pearson*x_av
print("Best fit parameters: a=%.10f  b=%.10f"%(a_pearson,b_pearson))
rxy = Sxy/numpy.sqrt(Sxx*Syy)
print("Pearson's Corr. coef: ", rxy)
tan2theta = 2*rxy*numpy.sqrt(Sxx*Syy)/(Sxx-Syy)
twotheta = numpy.arctan(tan2theta)
print("Pearson's best tan2theta, theta, slope: ", \
      tan2theta, 0.5*twotheta, numpy.tan(0.5*twotheta))
b1 = rxy*numpy.sqrt(Syy)/numpy.sqrt(Sxx)
print("b1 (Y on X), slope: ", b1, b1)
b2 = rxy*numpy.sqrt(Sxx)/numpy.sqrt(Syy)
print("b2 (X on Y), slope", b2, 1/b2)


# Prepare fit routine
fitobj = kmpfit.Fitter(residuals=residuals, data=(x, y))
fitobj.fit(params0=beta0)
print("\n======== Results kmpfit: effective variance =========")
print("Params:                 ", fitobj.params[0], numpy.tan(fitobj.params[1]))
print("Covariance errors:      ", fitobj.xerror)
print("Standard errors         ", fitobj.stderr)
print("Chi^2 min:              ", fitobj.chi2_min)
print("Reduced Chi^2:          ", fitobj.rchi2_min)

# Prepare fit routine
fitobj2 = kmpfit.Fitter(residuals=residuals2, data=(x, y))
fitobj2.fit(params0=beta0)
print("\n======== Results kmpfit Y on X =========")
print("Params:                 ", fitobj2.params)
print("Covariance errors:      ", fitobj2.xerror)
print("Standard errors         ", fitobj2.stderr)
示例#22
0
print("\nODR:")
print("==========")
from scipy.odr import Data, Model, ODR, RealData, odr_stop
linear = Model(model)
mydata = RealData(x, y, sx=errx, sy=erry)
myodr = ODR(mydata, linear, beta0=beta0, maxit=5000)
myoutput = myodr.run()
print("Fitted parameters:      ", myoutput.beta)
print("Covariance errors:      ", numpy.sqrt(myoutput.cov_beta.diagonal()))
print("Standard errors:        ", myoutput.sd_beta)
print("Minimum chi^2:          ", myoutput.sum_square)
print("Minimum (reduced)chi^2: ", myoutput.res_var)
beta = myoutput.beta

# Prepare fit routine
fitobj = kmpfit.Fitter(residuals=residuals, data=(x, y, errx, erry))
fitobj.fit(params0=beta0)
print("\n\n======== Results kmpfit with effective variance =========")
print("Fitted parameters:      ", fitobj.params)
print("Covariance errors:      ", fitobj.xerror)
print("Standard errors:        ", fitobj.stderr)
print("Chi^2 min:              ", fitobj.chi2_min)
print("Reduced Chi^2:          ", fitobj.rchi2_min)
print("Status Message:", fitobj.message)

# Compare to a fit with weights for y only
fitobj2 = kmpfit.Fitter(residuals=residuals2, data=(x, y, erry))
fitobj2.fit(params0=beta0)
print("\n\n======== Results kmpfit errors in Y only =========")
print("Fitted parameters:      ", fitobj2.params)
print("Covariance errors:      ", fitobj2.xerror)
示例#23
0
         elif i == 3:
            pderiv[3] = 1.0
   pderiv /= -err
   return pderiv


# Artificial data
N = 100
x = numpy.linspace(-5, 10, N)
truepars = [10.0, 5.0, 1.0, 0.0]
p0 = [9, 4.5, 0.8, 0]
y = my_model(truepars, x) + 0.3*numpy.random.randn(len(x))
err = 0.3*numpy.random.randn(N)

# The fit
fitobj = kmpfit.Fitter(residuals=my_residuals, deriv=my_derivs, data=(x, y, err))
try:
   fitobj.fit(params0=p0)
except Exception as mes:
   print("Something wrong with fit: ", mes)
   raise SystemExit

print("\n\n======== Results kmpfit with explicit partial derivatives =========")
print("Params:        ", fitobj.params)
print("Errors from covariance matrix         : ", fitobj.xerror)
print("Uncertainties assuming reduced Chi^2=1: ", fitobj.stderr) 
print("Chi^2 min:     ", fitobj.chi2_min)
print("Reduced Chi^2: ", fitobj.rchi2_min)
print("Iterations:    ", fitobj.niter)
print("Function ev:   ", fitobj.nfev) 
print("Status:        ", fitobj.status)
def residuals(p, my_arrays):
    x, y, err = my_arrays
    a, b = p
    return (y - model(p, x)) / err


x = numpy.array([1.0, 2, 3, 4, 5, 6, 7])
y = numpy.array([6.9, 11.95, 16.8, 22.5, 26.2, 33.5, 41.0])
N = len(y)
err = numpy.ones(N)
errw = numpy.array([0.05, 0.1, 0.2, 0.5, 0.8, 1.5, 4.0])
print("Data x:", x)
print("Data y:", y)
print("Errors:", errw)

fitobj = kmpfit.Fitter(residuals=residuals, data=(x, y, err))
fitobj.fit(params0=[1, 1])
print("\n-- Results kmpfit unit weighting wi=1.0:")
print("Best-fit parameters:                              ", fitobj.params)
print("Parameter errors using measurement uncertainties: ", fitobj.xerror)
print("Parameter errors unit-/relative weighted fit:     ", fitobj.stderr)
print("Minimum chi^2:                                    ", fitobj.chi2_min)
print("Covariance matrix:")
print(fitobj.covar)

fitobj = kmpfit.Fitter(residuals=residuals, data=(x, y, 10 * err))
fitobj.fit(params0=[1, 1])
print("\n-- Results kmpfit with (scaled) equal weights wi=10*1.0:")
print("Best-fit parameters:                              ", fitobj.params)
print("Parameter errors using measurement uncertainties: ", fitobj.xerror)
print("Parameter errors unit-/relative weighted fit:     ", fitobj.stderr)
示例#25
0
def linefitting(x,
                y,
                xerr=None,
                yerr=None,
                xrange=[-5, 5],
                color='b',
                prob=.95,
                yoffset=0):
    # Initial guess from simple linear regression
    sorted = np.argsort(x)
    b, a, rval, pval, std_err = stats.linregress(x[sorted], y[sorted])
    print("\nLineregress parameters: ", a, b)
    # Run the fit
    fitobj = kmpfit.Fitter(residuals=residuals, data=(x, y, xerr, yerr))
    fitobj.fit(params0=[a, b])
    print("\n======== Results kmpfit with effective variance =========")
    print("Fitted parameters:      ", fitobj.params)
    print("Covariance errors:      ", fitobj.xerror)
    print("Standard errors:        ", fitobj.stderr)
    print("Chi^2 min:              ", fitobj.chi2_min)
    print("Reduced Chi^2:          ", fitobj.rchi2_min)
    print("Status Message:", fitobj.message)
    c, d = fitobj.params
    e, f = fitobj.stderr
    # Alternative method using Orthogonal Distance Regression
    linear = odr.Model(model)
    mydata = odr.RealData(x, y, sx=xerr, sy=yerr)
    myodr = odr.ODR(mydata, linear, beta0=[a, b])
    myoutput = myodr.run()
    myoutput.pprint()
    # Plot the results
    xmod = np.linspace(xrange[0], xrange[1], 50)
    #ymod0 = model([a, b], xmod)
    ymod = model([c, d], xmod)
    plt.plot(xmod, ymod, linestyle='--', color=color, zorder=1)
    axes = plt.gca()
    dfdp = [1, xmod]
    ydummy, upperband, lowerband = fitobj.confidence_band(
        xmod, dfdp, prob, model)
    verts = list(zip(xmod, lowerband)) + list(zip(xmod[::-1], upperband[::-1]))
    poly = Polygon(verts,
                   closed=True,
                   fc='c',
                   ec='c',
                   alpha=0.3,
                   label="{:g}% conf.".format(prob * 100))
    axes.add_patch(poly)
    # The slope
    axes.text(0.03,
              0.95 - yoffset,
              'a = $%4.2f$ ' % d + u'\u00B1' + ' $%4.2f$' % f,
              size=10,
              transform=axes.transAxes,
              color=color)
    # The intercept
    axes.text(0.03,
              0.90 - yoffset,
              'b = $%4.2f$ ' % c + u'\u00B1' + ' $%4.2f$' % e,
              size=10,
              transform=axes.transAxes,
              color=color)
    return
# Artificial data
#================
N = 50  # Number of data points
mean = 0.0
sigma = 0.6  # Characteristics of the noise we add
xstart = 2.0
xend = 10.0
x = numpy.linspace(3.0, 10.0, N)
paramsreal = [1.0, 1.0]
noise = numpy.random.normal(mean, sigma, N)
y = model(paramsreal, x) + noise

# Prepare a 'Fitter' object'
#===========================
arrays = (x, y)
fitobj = kmpfit.Fitter(residuals, data=arrays)

paramsinitial = (0.0, 0.0)
fitobj.fit(params0=paramsinitial)
if (fitobj.status <= 0):
    print('Error message = ', fitobj.errmsg)
else:
    print("Optimal parameters: ", fitobj.params)

# Plot the result
#================
rc('legend', fontsize=8)
fig = figure()
xp = numpy.linspace(xstart - 1, xend + 1, 200)
frame = fig.add_subplot(1, 1, 1, aspect=1.0)
frame.plot(x, y, 'ro', label="Data")
示例#27
0
# Artificial data
x = numpy.array([2, 4, 6, 8, 10, 12])
y = numpy.array([3.5, 7.2, 9.5, 17.1, 20.0, 25.5])
err = numpy.array([0.55, 0.65, 0.74, 0.5, 0.85, 0.6])

# Prepare plot
fig = figure()
rc('legend', fontsize=8)
frame = fig.add_subplot(1, 1, 1)
frame.plot(x, y, 'go', label="data")
frame.set_xlabel("x")
frame.set_ylabel("y")
frame.set_title("Exclude poor data with criterion of Chauvenet")

params0 = (1, 1)
fitter = kmpfit.Fitter(residuals=residuals, data=(x, y, err))
fitter.fit(params0=params0)

print("======== Fit results all data included ==========")
print("Params:                      ", fitter.params)
print("Uncertainties:               ", fitter.xerror)
print("Errors assuming red.chi^2=1: ", fitter.stderr)
print("Iterations:                  ", fitter.niter)
print("Function ev:                 ", fitter.nfev)
print("dof:                         ", fitter.dof)
print("chi^2, rchi2:                ", fitter.chi2_min, fitter.rchi2_min)
print("Status:                      ", fitter.status)

from scipy.stats import chi2
rv = chi2(fitter.dof)
print("If H0 was correct, then")
        m, n, r_value, p_value, std_err = stats.linregress(x_i, y_i)
        m_vector[k], n_vector[k] = m, n

        #Lmfit
        result_lmfit = lmod.fit(y_i, x=x_i, m=0.005, n=0.24709)
        lmfit_matrix[:, k] = array(result_lmfit.params.valuesdict().values())
        lmfit_error[:, k] = array(
            [result_lmfit.params['m'].stderr, result_lmfit.params['n'].stderr])

        #Curvefit
        best_vals, covar = curve_fit(linear_model, x_i, y_i, p0=p0)
        curvefit_matrix[:, k] = best_vals

        #kapteyn
        fitobj = kmpfit.Fitter(residuals=residuals_lin, data=(x_i, y_i))
        fitobj.fit(params0=p0)
        kapteyn_matrix[:, k] = fitobj.params

    #Get fit mean values
    n_Median, n_16th, n_84th = median(n_vector), percentile(n_vector,
                                                            16), percentile(
                                                                n_vector, 84)
    m_Median, m_16th, m_84th = median(m_vector), percentile(m_vector,
                                                            16), percentile(
                                                                m_vector, 84)
    m_Median_lm, m_16th_lm, m_84th_lm = median(lmfit_matrix[0, :]), percentile(
        lmfit_matrix[0, :], 16), percentile(lmfit_matrix[0, :], 84)
    n_Median_lm, n_16th_lm, n_84th_lm = median(lmfit_matrix[1, :]), percentile(
        lmfit_matrix[1, :], 16), percentile(lmfit_matrix[1, :], 84)
    m_Median_lm_error, n_Median_lm_error = median(lmfit_error[0, :]), median(
示例#29
0

pv = Plots_Manager()

dz = Fitting_Gaussians()
mu, sigma = 0, 1
A = (1 / ((2 * 3.1415)**0.5) * sigma)
x_true = linspace(-2, 2, 100)
y = A * exp(-(x_true - mu)**2 / (2 * sigma**2))
zerolev = zeros(len(x_true))
p_1, conv = leastsq(Residuals_Gaussian, [A, mu, sigma], [x_true, y, zerolev])
print 'predictions initial', p_1

L = exp(-y / 2)
p0 = [-0.2, 0, 1, max(L)]
fitterG = kmpfit.Fitter(residuals=residualsG, data=(x_true, L))
fitterG.fit(params0=p0)
print fitterG.params
gaus_inv = funcG(fitterG.params, x_true)

y_frac = y / 3
p_2, conv = leastsq(Residuals_Gaussian, [A / 5, mu, sigma],
                    [x_true, y_frac, zerolev])
print 'predictions by3', p_2
gaus_inv = SingleGaussian_Cont([x_true, zerolev], p_2[0], p_2[1], p_2[2])

# dz.SingleGaussian_Cont(Ind_Variables, A, mu, sigma)

plt.plot(x_true, y, '-', color='black')
plt.plot(x_true, gaus_inv, '-', color='red')
# plt.plot(x_true, y_frac, '-', color = 'orange')
import numpy as np
import pandas as pd
from matplotlib.pyplot import figure, show
from kapteyn import kmpfit


def model(p, v, x, w):
    a, b, c, d, e, f, g, h, i, j, k = p  #coefficients to the polynomials
    return a * v**2 + b * x**2 + c * w**2 + d * v * x + e * v * w + f * x * w + g * v + h * x + i * y + k


def residuals(p, data):  # Function needed by fit routine
    v, x, w, z = data  # The values for v, x, w and the measured hypersurface z
    a, b, c, d, e, f, g, h, i, j, k = p  #coefficients to the polynomials
    return (z - model(p, v, x, w))  # Returns an array of residuals.
    #This should (z-model(p,v,x,w))/err if
    # there are error bars on the measured z values


#initial guess at parameters. Avoid using 0.0 as initial guess
par0 = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]

#create a fitting object. data should be in the form
#that the functions above are looking for, i.e. a Nx4
#list of lists/tuples like (v,x,w,z)
data = pd.read_csv("data.csv")
print(data)
fitobj = kmpfit.Fitter(residuals=residuals, data=data)

# call the fitter
fitobj.fit(params0=par0)