def match_features(self, kapture_data):
     image_list = [
         filename
         for _, _, filename in kapture.flatten(kapture_data.records_camera)
     ]
     descriptors = []
     descriptor_type = kapture_data.descriptors.dtype
     descriptor_size = kapture_data.descriptors.dsize
     for image_path in image_list:
         descriptors_full_path = get_descriptors_fullpath(
             kapture_data.kapture_path, image_path)
         descriptors.append(
             image_descriptors_from_file(descriptors_full_path,
                                         descriptor_type, descriptor_size))
     kapture_data.matches = kapture.Matches()
     if self._sequential_length is None:
         self._sequential_length = len(image_list)
     for i in tqdm(range(len(image_list))):
         for j in range(i + 1,
                        min(len(image_list), i + self._sequential_length)):
             matches = self._matcher.match_descriptors(
                 descriptors[i], descriptors[j])
             if self._minimal_score is not None:
                 mask = matches[:, 2] > self._minimal_score
                 matches = matches[mask]
             kapture_data.matches.add(image_list[i], image_list[j])
             matches_full_path = get_matches_fullpath(
                 (image_list[i], image_list[j]), kapture_data.kapture_path)
             image_matches_to_file(matches_full_path, matches)
def compute_matches(input_path: str, pairsfile_path: str):
    """
    compute matches from descriptors. images to match are selected from a pairsfile (csv with name1, name2, score)

    :param input_path: input path to kapture input root directory
    :type input_path: str
    :param pairsfile_path: path to pairs file (csv with 3 fields, name1, name2, score)
    :type pairsfile_path: str
    """
    logger.info(f'compute_matches. loading input: {input_path}')
    kdata = kapture_from_dir(input_path)
    assert kdata.sensors is not None
    assert kdata.records_camera is not None
    assert kdata.descriptors is not None

    image_pairs = get_pairs_from_file(pairsfile_path)
    matcher = MatchPairNnTorch(use_cuda=torch.cuda.is_available())
    new_matches = kapture.Matches()

    logger.info('compute_matches. entering main loop...')
    hide_progress_bar = logger.getEffectiveLevel() > logging.INFO
    for image_path1, image_path2 in tqdm(image_pairs,
                                         disable=hide_progress_bar):
        if image_path1 == image_path2:
            continue
        if image_path1 > image_path2:
            image_path1, image_path2 = image_path2, image_path1

        if image_path1 not in kdata.descriptors or image_path2 not in kdata.descriptors:
            logger.warning('unable to find descriptors for image pair : '
                           '\n\t{} \n\t{}'.format(image_path1, image_path2))
            continue

        descriptor1 = load_descriptors(input_path, image_path1,
                                       kdata.descriptors.dtype,
                                       kdata.descriptors.dsize)
        descriptor2 = load_descriptors(input_path, image_path2,
                                       kdata.descriptors.dtype,
                                       kdata.descriptors.dsize)
        matches = matcher.match_descriptors(descriptor1, descriptor2)
        matches_path = get_matches_fullpath((image_path1, image_path2),
                                            input_path)
        image_matches_to_file(matches_path, matches)
        new_matches.add(image_path1, image_path2)

    if not matches_check_dir(new_matches, input_path):
        logger.critical(
            'matching ended successfully but not all files were saved')
    logger.info('all done')
示例#3
0
def compute_matches_from_loaded_data(input_path: str,
                                     kdata: kapture.Kapture,
                                     image_pairs: list,
                                     overwrite_existing: bool = False):
    assert kdata.sensors is not None
    assert kdata.records_camera is not None
    assert kdata.descriptors is not None

    matcher = MatchPairNnTorch(use_cuda=torch.cuda.is_available())
    new_matches = kapture.Matches()

    logger.info('compute_matches. entering main loop...')
    hide_progress_bar = logger.getEffectiveLevel() > logging.INFO
    skip_count = 0
    for image_path1, image_path2 in tqdm(image_pairs, disable=hide_progress_bar):
        if image_path1 == image_path2:
            continue
        if image_path1 > image_path2:
            image_path1, image_path2 = image_path2, image_path1

        # skip existing matches
        if (not overwrite_existing) and (kdata.matches is not None) and ((image_path1, image_path2) in kdata.matches):
            new_matches.add(image_path1, image_path2)
            skip_count += 1
            continue

        if image_path1 not in kdata.descriptors or image_path2 not in kdata.descriptors:
            logger.warning('unable to find descriptors for image pair : '
                           '\n\t{} \n\t{}'.format(image_path1, image_path2))
            continue

        descriptor1 = load_descriptors(input_path, image_path1, kdata.descriptors.dtype, kdata.descriptors.dsize)
        descriptor2 = load_descriptors(input_path, image_path2, kdata.descriptors.dtype, kdata.descriptors.dsize)
        matches = matcher.match_descriptors(descriptor1, descriptor2)
        matches_path = get_matches_fullpath((image_path1, image_path2), input_path)
        image_matches_to_file(matches_path, matches)
        new_matches.add(image_path1, image_path2)

    if not overwrite_existing:
        logger.debug(f'{skip_count} pairs were skipped because the match file already existed')
    if not matches_check_dir(new_matches, input_path):
        logger.critical('matching ended successfully but not all files were saved')
    logger.info('all done')
示例#4
0
def compute_matches_from_loaded_data(input_path: str,
                                     tar_handlers: Optional[TarCollection],
                                     kdata: kapture.Kapture,
                                     descriptors_type: Optional[str],
                                     image_pairs: list,
                                     overwrite_existing: bool = False):
    assert kdata.sensors is not None
    assert kdata.records_camera is not None
    assert kdata.descriptors is not None
    os.umask(0o002)

    if descriptors_type is None:
        descriptors_type = try_get_only_key_from_collection(kdata.descriptors)
    assert descriptors_type is not None
    assert descriptors_type in kdata.descriptors
    keypoints_type = kdata.descriptors[descriptors_type].keypoints_type
    # assert kdata.descriptors[descriptors_type].metric_type == "L2"

    matcher = MatchPairNnTorch(use_cuda=torch.cuda.is_available())
    new_matches = kapture.Matches()

    logger.info('compute_matches. entering main loop...')
    hide_progress_bar = logger.getEffectiveLevel() > logging.INFO
    skip_count = 0
    for image_path1, image_path2 in tqdm(image_pairs,
                                         disable=hide_progress_bar):
        if image_path1 == image_path2:
            continue
        if image_path1 > image_path2:
            image_path1, image_path2 = image_path2, image_path1

        # skip existing matches
        if (not overwrite_existing) \
                and (kdata.matches is not None) \
                and keypoints_type in kdata.matches \
                and ((image_path1, image_path2) in kdata.matches[keypoints_type]):
            new_matches.add(image_path1, image_path2)
            skip_count += 1
            continue

        if image_path1 not in kdata.descriptors[descriptors_type] \
                or image_path2 not in kdata.descriptors[descriptors_type]:
            logger.warning('unable to find descriptors for image pair : '
                           '\n\t{} \n\t{}'.format(image_path1, image_path2))
            continue

        descriptor1 = load_descriptors(
            descriptors_type, input_path, tar_handlers, image_path1,
            kdata.descriptors[descriptors_type].dtype,
            kdata.descriptors[descriptors_type].dsize)
        descriptor2 = load_descriptors(
            descriptors_type, input_path, tar_handlers, image_path2,
            kdata.descriptors[descriptors_type].dtype,
            kdata.descriptors[descriptors_type].dsize)
        matches = matcher.match_descriptors(descriptor1, descriptor2)
        matches_path = get_matches_fullpath((image_path1, image_path2),
                                            keypoints_type, input_path,
                                            tar_handlers)
        image_matches_to_file(matches_path, matches)
        new_matches.add(image_path1, image_path2)

    if not overwrite_existing:
        logger.debug(
            f'{skip_count} pairs were skipped because the match file already existed'
        )
    if not matches_check_dir(new_matches, keypoints_type, input_path,
                             tar_handlers):
        logger.critical(
            'matching ended successfully but not all files were saved')

    # update kapture matches
    if kdata.matches is None:
        kdata.matches = {}
    if keypoints_type not in kdata.matches:
        kdata.matches[keypoints_type] = kapture.Matches()
    kdata.matches[keypoints_type].update(new_matches)

    logger.info('all done')