def test_mnmf(): """ Test the MNMF procedure. """ graph = nx.newman_watts_strogatz_graph(100, 5, 0.3) model = MNMF() model.fit(graph) memberships = model.get_memberships() indices = [k for k, v in memberships.items()].sort() nodes = [node for node in graph.nodes()].sort() assert graph.number_of_nodes() == len(memberships) assert indices == nodes assert type(memberships) == dict embedding = model.get_embedding() assert embedding.shape[0] == graph.number_of_nodes() assert embedding.shape[1] == model.dimensions assert type(embedding) == np.ndarray centers = model.get_cluster_centers() assert centers.shape[0] == model.clusters assert centers.shape[1] == model.dimensions assert type(centers) == np.ndarray
def mnmf(population, neighbors, probability): g = nx.newman_watts_strogatz_graph(population, neighbors, probability) model = MNMF() model.fit(g) #print(model.get_memberships()) #print(model.get_embedding()) #print(model.get_cluster_centers()) return [ model.get_memberships(), model.get_embedding(), model.get_cluster_centers() ]
# DANMF example #---------------- g = nx.newman_watts_strogatz_graph(100, 10, 0.02) model = DANMF() model.fit(g) #---------------- # M-NMF example #---------------- g = nx.newman_watts_strogatz_graph(100, 10, 0.02) model = MNMF() model.fit(g) #---------------------------- # Label Propagation example #---------------------------- g = nx.newman_watts_strogatz_graph(100, 10, 0.02) model = LabelPropagation() model.fit(g) #----------------- # GraRep example
"""MNMF example.""" import networkx as nx from karateclub.community_detection.overlapping import MNMF g = nx.newman_watts_strogatz_graph(100, 20, 0.05) model = MNMF() model.fit(g)