示例#1
0
class Kashgari:
    def __init__(self):
        self.model = None
        self.chunk_size = 100
        self.set_features_numeric = dict()
        self.set_features_text = dict()

    def prepare_data_fit(self, tokens, tags, chunk_size, overlap=10):
        text_list = []
        first_of_p_list = []
        tag_list = []

        buffer_text = []
        buffer_first_of_p = []
        buffer_tag = []

        text_features = set("token")
        numeric_features = set("first_of_p")

        self.set_features_numeric = dict()

        for doc, doc_tags in zip(tokens, tags):
            for token, tag in zip(doc, doc_tags):
                features = agregado(token, simple_features=True)
                buffer_text.append(features['token'])
                buffer_first_of_p.append(
                    '2' if features['first_of_p'] else '1')
                buffer_tag.append(tag)

                if len(buffer_text) > chunk_size:
                    text_list.append(buffer_text)
                    first_of_p_list.append(buffer_first_of_p)
                    tag_list.append(buffer_tag)
                    # Zerar
                    buffer_text = []
                    buffer_first_of_p = []
                    buffer_tag = []

            print("Processed doc")

        if len(buffer_text) >= 0:
            text_list.append(buffer_text)
            first_of_p_list.append(buffer_first_of_p)
            tag_list.append(buffer_tag)

        results = (text_list, first_of_p_list)
        return results, tag_list

    def prepare_data_predict(self, tokens, chunk_size):
        text_list = []
        first_of_p_list = []

        buffer_text = []
        buffer_first_of_p = []

        for token in tokens:
            features = agregado(token, simple_features=True)
            buffer_text.append(features['token'])
            buffer_first_of_p.append('2' if features['first_of_p'] else '1')

            if len(buffer_text) >= chunk_size:
                text_list.append(buffer_text)
                first_of_p_list.append(buffer_first_of_p)
                # Zerar
                buffer_text = []
                buffer_first_of_p = []

        if len(buffer_text) > 0:
            text_list.append(buffer_text)
            first_of_p_list.append(buffer_first_of_p)

        results = (text_list, first_of_p_list)

        return results

    def train(self, tokens, tags):

        x, y = self.prepare_data_fit(tokens, tags, chunk_size=self.chunk_size)

        text_embedding = BareEmbedding(task=kashgari.LABELING,
                                       sequence_length=self.chunk_size)
        first_of_p_embedding = NumericFeaturesEmbedding(
            feature_count=2,
            feature_name='first_of_p',
            sequence_length=self.chunk_size)

        stack_embedding = StackedEmbedding(
            [text_embedding, first_of_p_embedding])

        stack_embedding.analyze_corpus(x, y)

        from kashgari.tasks.labeling import BiLSTM_Model, BiLSTM_CRF_Model
        self.model = BiLSTM_CRF_Model(embedding=stack_embedding)
        self.model.fit(x, y, batch_size=1, epochs=20)

    def predict(self, tokens):
        import itertools
        results = []
        for doc in tokens:
            x = self.prepare_data_predict(doc, chunk_size=self.chunk_size)

            predicted = self.model.predict(x)
            x_list = list(itertools.chain.from_iterable(x[0]))
            predicted_unified = list(itertools.chain.from_iterable(predicted))
            predicted_truncated = predicted_unified[:len(doc)]

            print(
                f"len doc{len(doc)} | x_list{len(x_list)} |len predicted_unified{len(predicted_unified)} |len predicted_truncated{len(predicted_truncated)} |"
            )
            results.append(predicted_unified[:len(doc)])

        return results
示例#2
0
    text = [[0.9, 0.1, 0.1], [0.9, 0.1, 0.1], [0.1, 0.8, 0.1], [0.1, 0.8, 0.1],
            [0.1, 0.8, 0.1]]
    label = [
        'B-Category', 'I-Category', 'B-ProjectName', 'I-ProjectName',
        'I-ProjectName'
    ]

    text_list = [text] * 100
    label_list = [label] * 100

    SEQUENCE_LEN = 80

    # You can use WordEmbedding or BERTEmbedding for your text embedding
    bare_embedding = DirectEmbedding(task=kashgari.RAW_LABELING,
                                     sequence_length=SEQUENCE_LEN,
                                     embedding_size=3)
    #bare_embedding = BareEmbedding(task=kashgari.LABELING, sequence_length=SEQUENCE_LEN)

    x = (text_list)
    y = label_list
    bare_embedding.analyze_corpus(x, y)

    # Now we can embed with this stacked embedding layer
    # We can build any labeling model with this embedding

    from kashgari.tasks.labeling import BiLSTM_Model, BiLSTM_CRF_Model
    model = BiLSTM_CRF_Model(embedding=bare_embedding)
    model.fit(x, y, batch_size=1, epochs=3)

    print(model.predict(x))
    #print(model.predict_entities(x))
示例#3
0
class BertProsody:
  """ 目前只支持长度50,输入字符数49 + 终结符 """
  def __init__(self):
    self.model, self.model_dir, self.model_path = None, None, None
    self.sess = None
    return

  def initial_model(self, bert_model_path, psd_model_path):
    print('=============init bert model=========================')
    print("bert model path:", bert_model_path)
    print("crf model path:", psd_model_path)
    self.sess = tf.Session()
    set_session(self.sess)
    self.model_dir = os.path.dirname(os.path.dirname(psd_model_path))
    self.model_path = psd_model_path
    data_path = os.path.join(self.model_dir, "feature_psd.pkl")
    train_data, train_label, test_data, test_label = \
        pickle.load(open(data_path, 'rb'))

    bert_embed = BERTEmbedding(bert_model_path, task=kashgari.LABELING,
                               sequence_length=50)
    self.model = BiLSTM_CRF_Model(bert_embed)
    self.model.build_model(x_train=train_data, y_train=train_label,
                           x_validate=test_data, y_validate=test_label)
    self.model.compile_model()
    self.model.tf_model.load_weights(psd_model_path)
    print('=============bert model loaded=========================')
    return

  def _write_dict(self):
    label_path = os.path.join(self.model_dir, "idx2label.txt")
    with open(label_path, "w", encoding="utf-8") as fr:
      for key, value in self.model.embedding.label2idx.items():
        fr.write("{} {}\n".format(value, key))

    token_path = os.path.join(self.model_dir, "token2idx.txt")
    with open(token_path, "w", encoding="utf-8") as fr:
      for key, value in self.model.embedding.token2idx.items():
        if len(key) > 0:
          fr.write("{} {}\n".format(key, value))

  def predict(self, sentence_list):
    """ 通过句子预测韵律,标点断开 """
    bert_input = []
    for sent in sentence_list:
      assert len(sent) < 50
      bert_input.append([c for c in sent])
    print("bert-input:", bert_input)
    prosody = self.model.predict(bert_input)
    return prosody

  def compute_embed(self, sentence_list):
    bert_input = [[c for c in sent] for sent in sentence_list]
    print("bert-input:", bert_input)
    tensor = self.model.embedding.process_x_dataset(bert_input)
    res = self.model.tf_model.predict(tensor)
    import numpy as np
    print("debug:", np.shape(res), res[0])
    return tensor

  def save_pb(self):
    self._write_dict()
    pb_dir = os.path.join(self.model_dir, "pb")
    os.makedirs(pb_dir, exist_ok=True)
    # [print(n.name) for n in tf.get_default_graph().as_graph_def().node]
    h5_to_pb(self.model.tf_model, pb_dir, self.sess, "model_psd.pb",
             ["output_psd"])
    return

  @staticmethod
  def change_by_rules(old_pairs):
    """ 强制规则:
    1. 逗号之前是#3,句号之前是#4
    2. 其他位置,#3 -> #2
    """
    new_pairs = []
    for i, (char, ph, psd) in enumerate(old_pairs[0:-1]):
      next_char, _, _ = old_pairs[i+1]
      if next_char == ",":
        new_pairs.append((char, ph, "3"))
      elif next_char in ["。", "?", "!"]:
        new_pairs.append((char, ph, "4"))
      else:
        if psd == "3":
          new_pairs.append((char, ph, "2"))
        else:
          new_pairs.append((char, ph, psd))
    new_pairs.append(old_pairs[-1])
    return new_pairs
示例#4
0
class BertPolyPhone:
  """ 拼音预测主类"""
  def __init__(self):
    super().__init__()
    self.poly_dict = dict()
    poly_dict_path = "/data1/liufeng/synthesis/frontend/data/simple_poly_dict"
    for line in read_lines(poly_dict_path):
      line = line.replace(" ", "").replace("*", "")
      key = line.split(":")[0]
      value = line.split(":")[1].split(",")
      self.poly_dict[key] = value
    self.model, self.model_dir = None, None
    self.sess = None

  def inialize_model(self, bert_model_path, poly_model_path):
    print('=============init phone model=========================')
    print("bert model path:", bert_model_path)
    print("crf model path:", poly_model_path)
    # 需要训练数据的路径构建字典
    self.sess = tf.Session()
    set_session(self.sess)
    self.model_dir = os.path.dirname(os.path.dirname(poly_model_path))
    data_path = os.path.join(self.model_dir, "feature.pkl")

    train_data, train_label, test_data, test_label = \
        pickle.load(open(data_path, 'rb'))

    bert_embed = BERTEmbedding(bert_model_path, task=kashgari.LABELING,
                               sequence_length=50)
    self.model = BiLSTM_CRF_Model(bert_embed)

    self.model.build_model(x_train=train_data, y_train=train_label,
                           x_validate=test_data, y_validate=test_label)
    self.model.compile_model()
    self.model.tf_model.load_weights(poly_model_path)
    print('=============successful loaded=========================')

  def _lookup_dict(self, bert_result, pred_ph_pairs):
    """查字典的方法对拼音进行修正 """
    # todo: 如果词在词典中,不用bert的结果。
    bert_phone_result = []
    for index_c, (char, ph, _) in enumerate(pred_ph_pairs):
      if char in self.poly_dict.keys():
        # 如果bert预测结果不在多音字字典中,就是预测结果跑偏了
        if bert_result[index_c] not in self.poly_dict[char]:
          bert_phone_result.append((char, ph))
        else:
          bert_result[index_c] = split_phone_format(bert_result[index_c])
          bert_phone_result.append((char, bert_result[index_c]))
          if ph != bert_result[index_c]:
            print("using bert result {}:{} instead of {}".format(
              char, bert_result[index_c], ph))
      else:
        bert_phone_result.append((char, ph))
    return bert_phone_result

  def predict(self, sentence_list):
    """ 通过句子预测韵律,标点断开 """
    bert_input = []
    for sent in sentence_list:
      assert len(sent) < 50
      bert_input.append([c for c in sent])
    print("bert-input:", bert_input)
    prosody = self.model.predict(bert_input)
    return prosody

  def save_pb(self):
    self._write_dict()
    pb_dir = os.path.join(self.model_dir, "pb")
    os.makedirs(pb_dir, exist_ok=True)
    h5_to_pb(self.model.tf_model, pb_dir, self.sess, "model_phone.pb",
             ["output_phone"])
    return

  def _write_dict(self):
    label_path = os.path.join(self.model_dir, "pb/phone_idx2label.txt")
    with open(label_path, "w", encoding="utf-8") as fr:
      for key, value in self.model.embedding.label2idx.items():
        fr.write("{} {}\n".format(value, key))
    print("write {}".format(label_path))

    token_path = os.path.join(self.model_dir, "pb/phone_token2idx.txt")
    with open(token_path, "w", encoding="utf-8") as fr:
      for key, value in self.model.embedding.token2idx.items():
        if len(key) > 0:
          fr.write("{} {}\n".format(key, value))
    print("write {}".format(token_path))
    return

  def compute_embed(self, sentence_list):
    bert_input = [[c for c in sent] for sent in sentence_list]
    print("bert-input:", bert_input)
    import numpy as np
    tensor = self.model.embedding.process_x_dataset(bert_input)
    print("debug:", np.shape(tensor), tensor)
    res = self.model.tf_model.predict(tensor)
    import numpy as np
    print("debug:", np.shape(res), res[0][0: len(sentence_list[0]+1)])
    return tensor

  @staticmethod
  def _merge_eng_char(bert_phone_result, dict_phone_pairs):
    from src.utils import check_all_chinese
    index = 0
    new_bert_phone = []
    for word, _, _ in dict_phone_pairs:
      if (not check_all_chinese(word)) and len(word) > 1:
        new_bert_phone.append(bert_phone_result[index])
        index += len(word)
      else:
        new_bert_phone.append(bert_phone_result[index])
        index += 1
    return new_bert_phone

  def modify_result(self, bert_result, dict_phone_pairs):
    bert_result = self._merge_eng_char(bert_result, dict_phone_pairs)
    bert_phone_pairs = self._lookup_dict(bert_result, dict_phone_pairs)
    phone_pairs = bert_phone_pairs
    # phone_pairs = change_yi(phone_pairs)
    # phone_pairs = change_bu(phone_pairs)
    phone_pairs = sandhi(phone_pairs)
    bert_result = [ph for _, ph in phone_pairs]
    chars = "".join([c for c, _ in phone_pairs])
    bert_result = change_qingyin(bert_result, chars)
    return bert_result
示例#5
0
    # ou o GloVE-300 do http://nilc.icmc.usp.br/embeddings se não der certo

    # 2 - Ver como fazer o Predict. Temos que processar a frase para ficar igual a deles.
    # Eles usam um PunktSentenceTokenizer com um abbrev_list. Esses scripts estao na pasta leNer-dataset.

    # 3 - Ver como integrar esse codigo com o webstruct atual
    # 4 - Seria uma boa ideia ter uma interface tipo o Broka. Para que existesse a lista de arquivos, e que
    # pudesse abrir para re-treinar, abrindo com o plugin de Ramon.
    # Uma ideia seria ate converter o dataset deles atual para o formato do broka hoje em Html ( pode ser algo simples, como colocar cada paragrafo como um p)

    # 5 - Fazer a persistencia ( O kashgari tem um metodo save/load)


    # 2 - Aumentar epochs para treinar

    # You can use WordEmbedding or BERTEmbedding for your text embedding
    text_embedding = BareEmbedding(task=kashgari.LABELING)

    text_embedding.analyze_corpus(tokens, labels)

    # Now we can embed with this stacked embedding layer
    # We can build any labeling model with this embedding

    from kashgari.tasks.labeling import BiLSTM_CRF_Model

    model = BiLSTM_CRF_Model(embedding=text_embedding)
    model.fit(tokens, labels, batch_size=8, epochs=10)

    print(model.predict(tokens))
    # print(model.predict_entities(x))