示例#1
0
 def train_model(self):
     x_train, y_train, x_valid, y_valid = self.data_load(
         validation_split=0.2)
     model = BLSTMCRFModel(self.embedding)
     model.fit(x_train,
               y_train,
               x_validate=x_valid,
               y_validate=y_valid,
               epochs=self.EPOCHS,
               batch_size=self.BATCH_SIZE)
     model.save(self.model_path)
示例#2
0
def main():
    # parser config
    config_file = "./config.ini"
    cp = ConfigParser()
    cp.read(config_file)

    # default config
    output_fold = cp["TRAIN"].get("output_fold")
    epochs = cp["TRAIN"].getint("epochs")
    batch_size = cp["TRAIN"].getint("batch_size")
    generator_workers = cp["TRAIN"].getint("generator_workers")
    output_weights_name = cp["TRAIN"].get("output_weights_name")
    sequence_length_max = cp["TRAIN"].getint("sequence_length_max")
    output_model_name = cp["TRAIN"].get("output_model_name")
    save_weights_only = cp["TRAIN"].getboolean("save_weights_only")
    cyclicLR_mode = cp["TRAIN"].get("cyclicLR_mode")
    base_lr = cp["TRAIN"].getfloat("base_lr")
    max_lr = cp["TRAIN"].getfloat("max_lr")

    today = datetime.date.today()
    formatted_today = today.strftime('%y%m%d')
    output_dir = os.path.join('experiments', formatted_today, output_fold)
    if not os.path.isdir(output_dir):
        os.makedirs(output_dir)

    output_dir_src = os.path.join(output_dir, 'src')
    if not os.path.isdir(output_dir_src):
        os.makedirs(output_dir_src)
    print(f"backup config file to {output_dir_src}")
    shutil.copy(config_file,
                os.path.join(output_dir_src,
                             os.path.split(config_file)[1]))
    train_file = os.path.basename(__file__)
    shutil.copy(train_file, os.path.join(output_dir_src, train_file))

    train_x, train_y = CoNLL2003Corpus.get_sequence_tagging_data('train')
    validate_x, validate_y = CoNLL2003Corpus.get_sequence_tagging_data(
        'validate')
    test_x, test_y = CoNLL2003Corpus.get_sequence_tagging_data('test')

    #'bert-large-cased'
    embedding = BERTEmbedding('bert-large-cased', sequence_length_max)
    # 还可以选择 `BLSTMModel` 和 `CNNLSTMModel`
    model = BLSTMCRFModel(embedding)
    # model.build_model(train_x, train_y)
    # model.build_multi_gpu_model(gpus=2)
    # print(model.summary())

    if save_weights_only:
        model_weights = os.path.join(output_dir, output_weights_name)
    else:
        model_weights = os.path.join(output_dir, output_model_name)

    checkpoint = ModelCheckpoint(
        model_weights,
        save_weights_only=save_weights_only,
        save_best_only=True,
        verbose=1,
    )
    earlystop = EarlyStopping(monitor='val_loss',
                              min_delta=0,
                              patience=20,
                              verbose=0,
                              mode='min')
    csv_logger = CSVLogger(os.path.join(output_dir, 'training.csv'))
    batch_size_cycliclr = ceil(len(train_x) / batch_size)
    if cyclicLR_mode == 'exp_range':
        gamma = 0.99994
    else:
        gamma = 1.
    clr = CyclicLR(mode=cyclicLR_mode,
                   step_size=batch_size_cycliclr,
                   base_lr=base_lr,
                   max_lr=max_lr,
                   gamma=gamma)
    save_min_loss = SaveMinLoss(filepath=output_dir)
    tb = TensorBoard(log_dir=os.path.join(output_dir, "logs"),
                     batch_size=batch_size)
    callbacks = [
        checkpoint,
        tb,
        csv_logger,
        # clr,
        save_min_loss,
        earlystop,
    ]
    print("** start training **")
    model.fit(train_x,
              train_y,
              x_validate=validate_x,
              y_validate=validate_y,
              epochs=epochs,
              batch_size=batch_size,
              labels_weight=True,
              fit_kwargs={
                  'callbacks': callbacks,
                  'workers': generator_workers,
                  'use_multiprocessing': True,
                  'class_weight': 'auto',
              })

    model_path = os.path.join(output_dir, 'model')
    model.save(model_path)
    report_evaluate = model.evaluate(test_x, test_y, debug_info=True)

    with open(os.path.join(output_dir, 'report_evaluate.log'), 'w') as f:
        f.write(f"The evaluate report is : \n{str(report_evaluate)}")
示例#3
0
model.__base_hyper_parameters__ = {
        'lstm_layer': {
            'units': 256,
            'return_sequences': True
        },
        'dense_layer': {
            'units': 64,
            'activation': 'tanh'
        }
    }


model.fit(train_x,
          train_y,
          x_validate=validate_x,
          y_validate=validate_y,
          epochs=20,
          batch_size=512,
          labels_weight=True,
          fit_kwargs={'callbacks': [early_stop, log]})

model.evaluate(test_x, test_y)

model.save(model_path)
"""
ep20
                        precision    recall  f1-score   support
        fictionalhuman     0.7541    0.7700    0.7620       661
                tvshow     0.8809    0.9703    0.9234       404
                 place     0.8156    0.8581    0.8363      1402
                 thing     0.7811    0.7332    0.7564      5746
            vocabulary     0.8681    0.7880    0.8261     15190
示例#4
0
def reduce_text(news):
    text = news['title'] + '。' + news['content']
    text = text.replace('\n', '').replace('\t', '')
    return list(text)


if __name__ == '__main__':
    start = time()
    print('train start')
    train_x, train_y = get_train_data('data/train_text.txt')
    embedding = BERTEmbedding("bert-base-chinese", sequence_length=512)
    model = BLSTMCRFModel(embedding)
    length = int(len(train_x) * 0.9)
    print(len(train_x[:length]), len(train_y[:length]))
    model.fit(train_x[:length], train_y[:length], train_x[length:], train_y[length:], epochs=5, batch_size=20)
    # model.fit(train_x[:length], train_y[:length], train_x[length:], train_y[length:], epochs=5, batch_size=128,
    #           labels_weight=True, default_labels_weight=100)
    valid_x = train_x[length:]
    valid_y = train_y[length:]
    model.save('models')
    print('train end')
    print('predict start')
    try:
        model = BLSTMCRFModel.load_model('models')
    except Exception:
        print('模型加载失败')
    newsId_set = set()
    try:
        with open('data/result_bert.txt', 'r', encoding='utf-8') as file:
            for line in file:
示例#5
0
文件: BertNer.py 项目: hogking/Sohu
from kashgari.embeddings import BERTEmbedding
from kashgari.tasks.seq_labeling import BLSTMCRFModel
import os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
from util import InputHelper

train_x, train_y = InputHelper().read_corpus('data', 'Bert_train')
embedding = BERTEmbedding('./chinese_L-12_H-768_A-12', sequence_length=256)
model = BLSTMCRFModel(embedding)
model.fit(train_x, train_y, epochs=10, batch_size=512)
model.save('./model')