def command_line(): args = parser.parse_args() if (args.validation): if (args.kfolds): fin = get_file(args.trainx[0]) finy = get_file(args.trainy[0]) if (args.method and args.method[0] == 'forest'): kcrossvalidation.do_kcross_validation(fin, finy, int(args.kfolds[0])) if (args.testx): fin = get_file(args.trainx[0]) finy = get_file(args.trainy[0]) (training, validation) = get_training_validation_set(fin, finy, training_start=0, training_end=2500, validation_start=0, validation_end=1) if (args.method and args.method[0] == 'forest'): forest = train_randomized_forest(training) classify_output(forest, treerandom) #print "accuracy : " + str(accuracy(validation,forest, treerandom)) print "done"
def run_k_times(k=1): for i in range(0,k): fin = get_file("trainx.txt") finy = get_file("trainy.csv") kcrossvalidation.do_kcross_validation(fin,finy,10) #kcrossvalidation.do_simpletree_kcross_validation(fin,finy,5) #(training,validation) = get_training_validation_set(fin,finy,training_start=0,training_end=2500,validation_start=2000,validation_end=2500) #tree = train_simple_tree(training) #treepredict.prune(tree,1) #print "accuracy : " + str(accuracy(validation,tree, treepredict)) #forest = train_randomized_forest(training) #print "accuracy : " + str(accuracy(validation,forest, treerandom)) #big_forest = train_big_randomized_forest(training) #print "accuracy : " + str(accuracy(validation,big_forest, big_treerandom)) #classify_output(forest, treerandom) #classify_output(forest, big_treerandom) fin.close() finy.close()
def run_k_times(k=1): for i in range(0, k): fin = get_file("trainx.txt") finy = get_file("trainy.csv") kcrossvalidation.do_kcross_validation(fin, finy, 10) #kcrossvalidation.do_simpletree_kcross_validation(fin,finy,5) #(training,validation) = get_training_validation_set(fin,finy,training_start=0,training_end=2500,validation_start=2000,validation_end=2500) #tree = train_simple_tree(training) #treepredict.prune(tree,1) #print "accuracy : " + str(accuracy(validation,tree, treepredict)) #forest = train_randomized_forest(training) #print "accuracy : " + str(accuracy(validation,forest, treerandom)) #big_forest = train_big_randomized_forest(training) #print "accuracy : " + str(accuracy(validation,big_forest, big_treerandom)) #classify_output(forest, treerandom) #classify_output(forest, big_treerandom) fin.close() finy.close()
def command_line(): args = parser.parse_args() if(args.validation): if(args.kfolds): fin = get_file(args.trainx[0]) finy = get_file(args.trainy[0]) if(args.method and args.method[0]=='forest'): kcrossvalidation.do_kcross_validation(fin,finy,int(args.kfolds[0])) if(args.testx): fin = get_file(args.trainx[0]) finy = get_file(args.trainy[0]) (training,validation) = get_training_validation_set(fin,finy,training_start=0,training_end=2500,validation_start=0,validation_end=1) if(args.method and args.method[0]=='forest'): forest = train_randomized_forest(training) classify_output(forest, treerandom) #print "accuracy : " + str(accuracy(validation,forest, treerandom)) print "done"