def runTest(self): nx, ny, nz, str_f, pt0, pt1, is_array = self.args slice_xyz = common.slices_two_points(pt0, pt1) # generate random source if is_array: shape = common.shape_two_points(pt0, pt1) value = np.random.rand(*shape).astype(np.float32) else: value = np.random.ranf() # instance fields = Fields(0, nx, ny, nz, '', 'single') tfunc = lambda tstep: np.sin(0.03 * tstep) incident = IncidentDirect(fields, str_f, pt0, pt1, tfunc, value) # host allocations eh = np.zeros(fields.ns_pitch, dtype=fields.dtype) # verify eh[slice_xyz] = fields.dtype(value) * fields.dtype(tfunc(1)) fields.update_e() fields.update_h() copy_eh_buf = fields.get_buf(str_f) copy_eh = np.zeros_like(eh) cuda.memcpy_dtoh(copy_eh, copy_eh_buf) original = eh[slice_xyz] copy = copy_eh[slice_xyz] norm = np.linalg.norm(original - copy) self.assertEqual(norm, 0, '%s, %g' % (self.args, norm)) fields.context_pop()
def runTest(self): nx, ny, nz, str_f, pt0, pt1, is_array = self.args slice_xyz = common.slices_two_points(pt0, pt1) # generate random source if is_array: shape = common.shape_two_points(pt0, pt1) value = np.random.rand(*shape).astype(np.float32) else: value = np.random.ranf() # instance fields = Fields(0, nx, ny, nz, '', 'single') tfunc = lambda tstep: np.sin(0.03*tstep) incident = IncidentDirect(fields, str_f, pt0, pt1, tfunc, value) # host allocations eh = np.zeros(fields.ns_pitch, dtype=fields.dtype) # verify eh[slice_xyz] = fields.dtype(value) * fields.dtype(tfunc(1)) fields.update_e() fields.update_h() copy_eh_buf = fields.get_buf(str_f) copy_eh = np.zeros_like(eh) cuda.memcpy_dtoh(copy_eh, copy_eh_buf) original = eh[slice_xyz] copy = copy_eh[slice_xyz] norm = np.linalg.norm(original - copy) self.assertEqual(norm, 0, '%s, %g' % (self.args, norm)) fields.context_pop()
def runTest(self): nx, ny, nz, str_f, pt0, pt1, is_array = self.args slice_xyz = common.slices_two_points(pt0, pt1) # generate random source if is_array: shape = common.shape_two_points(pt0, pt1) value = np.random.rand(*shape).astype(np.float32) else: value = np.random.ranf() # instance gpu_devices = common_gpu.gpu_device_list(print_info=False) context = cl.Context(gpu_devices) device = gpu_devices[0] qtask = QueueTask() fields = Fields(context, device, qtask, nx, ny, nz, '', 'single') tfunc = lambda tstep: np.sin(0.03*tstep) incident = IncidentDirect(fields, str_f, pt0, pt1, tfunc, value) # host allocations eh = np.zeros(fields.ns_pitch, dtype=fields.dtype) # verify eh[slice_xyz] = fields.dtype(value) * fields.dtype(tfunc(1)) fields.update_e() fields.update_h() fields.enqueue_barrier() copy_eh_buf = fields.get_buf(str_f) copy_eh = np.zeros_like(eh) cl.enqueue_copy(fields.queue, copy_eh, copy_eh_buf) original = eh[slice_xyz] copy = copy_eh[slice_xyz] norm = np.linalg.norm(original - copy) self.assertEqual(norm, 0, '%s, %g' % (self.args, norm))
def runTest(self): nx, ny, nz, str_f, pt0, pt1, is_array = self.args slice_xyz = common.slices_two_points(pt0, pt1) # generate random source if is_array: shape = common.shape_two_points(pt0, pt1) value = np.random.rand(*shape).astype(np.float32) else: value = np.random.ranf() # instance gpu_devices = common_gpu.gpu_device_list(print_info=False) context = cl.Context(gpu_devices) device = gpu_devices[0] qtask = QueueTask() fields = Fields(context, device, qtask, nx, ny, nz, '', 'single') tfunc = lambda tstep: np.sin(0.03 * tstep) incident = IncidentDirect(fields, str_f, pt0, pt1, tfunc, value) # host allocations eh = np.zeros(fields.ns_pitch, dtype=fields.dtype) # verify eh[slice_xyz] = fields.dtype(value) * fields.dtype(tfunc(1)) fields.update_e() fields.update_h() fields.enqueue_barrier() copy_eh_buf = fields.get_buf(str_f) copy_eh = np.zeros_like(eh) cl.enqueue_copy(fields.queue, copy_eh, copy_eh_buf) original = eh[slice_xyz] copy = copy_eh[slice_xyz] norm = np.linalg.norm(original - copy) self.assertEqual(norm, 0, '%s, %g' % (self.args, norm))