def create_instance(self, fields, fields_pt0, fields_pt1, overlap_pt0,
                        overlap_pt1):
        sx0, sy0, sz0 = fields_pt0
        ox0, oy0, oz0 = overlap_pt0
        ox1, oy1, oz1 = overlap_pt1

        subf_pt0 = (ox0 - sx0, oy0 - sy0, oz0 - sz0)
        subf_pt1 = (ox1 - sx0, oy1 - sy0, oz1 - sz0)

        if self.is_array:
            x0, y0, z0 = self.pt0
            svalue_pt0 = (ox0 - x0, oy0 - y0, oz0 - z0)
            svalue_pt1 = (ox1 - x0, oy1 - y0, oz1 - z0)

            dummied_shape = common.shape_two_points(self.pt0,
                                                    self.pt1,
                                                    is_dummy=True)
            dummied_shaped_svalue = self.spatial_value.reshape(dummied_shape)
            dummied_slices = [
                slice(p0, p1 + 1) for p0, p1 in zip(svalue_pt0, svalue_pt1)
            ]
            subdomain_shape = common.shape_two_points(svalue_pt0, svalue_pt1)
            svalue_subdomain = dummied_shaped_svalue[dummied_slices].reshape(
                subdomain_shape).copy()
        else:
            svalue_subdomain = self.spatial_value

        getattr(self, fields.device_type).IncidentDirect( \
                fields, self.str_f, subf_pt0, subf_pt1, self.tfunc, svalue_subdomain, self.is_overwrite)
示例#2
0
    def overlap_svalue(self, pt0, pt1, opt0, opt1, spatial_value, is_array):
        if is_array:
            dummied_shape = common.shape_two_points(pt0, pt1, is_dummy=True)
            overlap_shape = common.shape_two_points(opt0, opt1)
            shift_slices = [slice(op0-p0, op1-p0+1) \
                    for op0, op1, p0 in zip(opt0, opt1, pt0)]

            reshaped_svalue = spatial_value.reshape(dummied_shape)
            dummied_svalue = reshaped_svalue[shift_slices]
            svalue = dummied_svalue.reshape(overlap_shape)

        else:
            svalue = spatial_value

        return svalue
    def overlap_svalue(self, pt0, pt1, opt0, opt1, spatial_value, is_array):
        if is_array:
            dummied_shape = common.shape_two_points(pt0, pt1, is_dummy=True)
            overlap_shape = common.shape_two_points(opt0, opt1)
            shift_slices = [slice(op0-p0, op1-p0+1) \
                    for op0, op1, p0 in zip(opt0, opt1, pt0)]

            reshaped_svalue = spatial_value.reshape(dummied_shape)
            dummied_svalue = reshaped_svalue[shift_slices]
            svalue = dummied_svalue.reshape(overlap_shape)

        else:
            svalue = spatial_value

        return svalue
示例#4
0
    def __init__(self, fields, str_f, pt0, pt1, is_array=False, is_overwrite=True):
        """
        """

        common.check_type("fields", fields, Fields)
        common.check_type("str_f", str_f, (str, list, tuple), str)
        common.check_type("pt0", pt0, (list, tuple), int)
        common.check_type("pt1", pt1, (list, tuple), int)
        common.check_type("is_array", is_array, bool)
        common.check_type("is_overwrite", is_overwrite, bool)

        # local variables
        str_fs = common.convert_to_tuple(str_f)

        for strf in str_fs:
            strf_list = ["ex", "ey", "ez", "hx", "hy", "hz"]
            common.check_value("str_f", strf, strf_list)

        for axis, n, p0, p1 in zip(["x", "y", "z"], fields.ns, pt0, pt1):
            common.check_value("pt0 %s" % axis, p0, range(n))
            common.check_value("pt1 %s" % axis, p1, range(n))

        # global variables and functions
        self.mainf = fields
        self.str_fs = str_fs
        self.slice_xyz = common.slice_index_two_points(pt0, pt1)
        self.shape = common.shape_two_points(pt0, pt1, len(str_fs))
        self.is_overwrite = is_overwrite

        if is_array:
            self.func = self.set_fields_spatial_value
        else:
            self.func = self.set_fields_single_value
    def runTest(self):
        nx, ny, nz, str_f, pt0, pt1, is_array, mpi_type = self.args

        slices = common.slice_index_two_points(pt0, pt1)

        # generate random source
        if is_array:
            shape = common.shape_two_points(pt0, pt1)
            value = np.random.rand(*shape).astype(np.float32)
        else:
            value = np.random.ranf()

        # instance
        fields = Fields(nx, ny, nz, '', 'single', 0, mpi_type=mpi_type)

        tfunc = lambda tstep: np.sin(0.03 * tstep)
        incident = DirectIncident(fields, str_f, pt0, pt1, tfunc, value)

        # host allocations
        eh = np.zeros(fields.ns_pitch, dtype=fields.dtype)
        getf = GetFields(fields, str_f, pt0, pt1)

        # verify
        eh[slices] = fields.dtype(value) * fields.dtype(tfunc(1))
        fields.update_e()
        fields.update_h()
        fields.enqueue_barrier()

        original = eh[slices]
        getf.get_event().wait()
        copy = getf.get_fields()
        norm = np.linalg.norm(original - copy)
        self.assertEqual(norm, 0, '%s, %g' % (self.args, norm))
示例#6
0
    def runTest(self):
        nx, ny, nz, str_f, pt0, pt1, is_array = self.args
        slice_xyz = common.slices_two_points(pt0, pt1)

        # generate random source
        if is_array:
            shape = common.shape_two_points(pt0, pt1)
            value = np.random.rand(*shape).astype(np.float32)
        else:
            value = np.random.ranf()

        # instance
        fields = Fields(0, nx, ny, nz, '', 'single')

        tfunc = lambda tstep: np.sin(0.03 * tstep)
        incident = IncidentDirect(fields, str_f, pt0, pt1, tfunc, value)

        # host allocations
        eh = np.zeros(fields.ns_pitch, dtype=fields.dtype)

        # verify
        eh[slice_xyz] = fields.dtype(value) * fields.dtype(tfunc(1))
        fields.update_e()
        fields.update_h()

        copy_eh_buf = fields.get_buf(str_f)
        copy_eh = np.zeros_like(eh)
        cuda.memcpy_dtoh(copy_eh, copy_eh_buf)

        original = eh[slice_xyz]
        copy = copy_eh[slice_xyz]
        norm = np.linalg.norm(original - copy)
        self.assertEqual(norm, 0, '%s, %g' % (self.args, norm))

        fields.context_pop()
    def __init__(self, fields, str_f, pt0, pt1):
        """
        """

        common.check_type('fields', fields, (Fields, BufferFields))
        common.check_type('str_f', str_f, (str, list, tuple), str)
        common.check_type('pt0', pt0, (list, tuple), int)
        common.check_type('pt1', pt1, (list, tuple), int)

        # local variables
        str_fs = common.convert_to_tuple(str_f)

        for strf in str_fs:
            strf_list = ['ex', 'ey', 'ez', 'hx', 'hy', 'hz']
            common.check_value('str_f', strf, strf_list)

        for axis, n, p0, p1 in zip(['x', 'y', 'z'], fields.ns, pt0, pt1):
            common.check_value('pt0 %s' % axis, p0, range(n))
            common.check_value('pt1 %s' % axis, p1, range(n))

        # allocation
        shape = common.shape_two_points(pt0, pt1, len(str_fs))
        host_array = np.zeros(shape, dtype=fields.dtype)

        split_host_array = np.split(host_array, len(str_fs))
        split_host_array_dict = dict( zip(str_fs, split_host_array) ) 

        # global variables
        self.mainf = fields
        self.str_fs = str_fs
        self.slice_xyz = common.slices_two_points(pt0, pt1)

        self.host_array = host_array
        self.split_host_array_dict = split_host_array_dict
    def __init__(self, fields, str_f, pt0, pt1, is_array=False, is_overwrite=True):
        """
        """

        common.check_type('fields', fields, (Fields, BufferFields))
        common.check_type('str_f', str_f, (str, list, tuple), str)
        common.check_type('pt0', pt0, (list, tuple), int)
        common.check_type('pt1', pt1, (list, tuple), int)
        common.check_type('is_array', is_array, bool)
        common.check_type('is_overwrite', is_overwrite, bool)

        # local variables
        str_fs = common.convert_to_tuple(str_f)

        for strf in str_fs:
            strf_list = ['ex', 'ey', 'ez', 'hx', 'hy', 'hz']
            common.check_value('str_f', strf, strf_list)

        for axis, n, p0, p1 in zip(['x', 'y', 'z'], fields.ns, pt0, pt1):
            common.check_value('pt0 %s' % axis, p0, range(n))
            common.check_value('pt1 %s' % axis, p1, range(n))

        # global variables and functions
        self.mainf = fields
        self.str_fs = str_fs
        self.slice_xyz = common.slices_two_points(pt0, pt1)
        self.shape = common.shape_two_points(pt0, pt1, len(str_fs))
        self.is_overwrite = is_overwrite

        if is_array:
            self.func = self.set_fields_spatial_value
        else:
            self.func = self.set_fields_single_value
示例#9
0
    def __init__(self, fields, str_f, pt0, pt1):
        """
        """

        common.check_type("fields", fields, Fields)
        common.check_type("str_f", str_f, (str, list, tuple), str)
        common.check_type("pt0", pt0, (list, tuple), int)
        common.check_type("pt1", pt1, (list, tuple), int)

        # local variables
        str_fs = common.convert_to_tuple(str_f)

        for strf in str_fs:
            strf_list = ["ex", "ey", "ez", "hx", "hy", "hz"]
            common.check_value("str_f", strf, strf_list)

        for axis, n, p0, p1 in zip(["x", "y", "z"], fields.ns, pt0, pt1):
            common.check_value("pt0 %s" % axis, p0, range(n))
            common.check_value("pt1 %s" % axis, p1, range(n))

        # allocation
        shape = common.shape_two_points(pt0, pt1, len(str_fs))
        host_array = np.zeros(shape, dtype=fields.dtype)

        split_host_array = np.split(host_array, len(str_fs))
        split_host_array_dict = dict(zip(str_fs, split_host_array))

        # global variables
        self.mainf = fields
        self.str_fs = str_fs
        self.slice_xyz = common.slice_index_two_points(pt0, pt1)

        self.host_array = host_array
        self.split_host_array_dict = split_host_array_dict
    def runTest(self):
        nx, ny, nz, str_f, pt0, pt1, is_array = self.args
        slice_xyz = common.slices_two_points(pt0, pt1)

        # generate random source
        if is_array:
            shape = common.shape_two_points(pt0, pt1)
            value = np.random.rand(*shape).astype(np.float32)
        else:
            value = np.random.ranf()

        # instance
        fields = Fields(0, nx, ny, nz, '', 'single')

        tfunc = lambda tstep: np.sin(0.03*tstep)
        incident = IncidentDirect(fields, str_f, pt0, pt1, tfunc, value) 

        # host allocations
        eh = np.zeros(fields.ns_pitch, dtype=fields.dtype)

        # verify
        eh[slice_xyz] = fields.dtype(value) * fields.dtype(tfunc(1))
        fields.update_e()
        fields.update_h()

        copy_eh_buf = fields.get_buf(str_f)
        copy_eh = np.zeros_like(eh)
        cuda.memcpy_dtoh(copy_eh, copy_eh_buf)

        original = eh[slice_xyz]
        copy = copy_eh[slice_xyz]
        norm = np.linalg.norm(original - copy)
        self.assertEqual(norm, 0, '%s, %g' % (self.args, norm))

        fields.context_pop()
    def runTest(self):
        nx, ny, nz, str_f, pt0, pt1, is_array, mpi_type = self.args

        slices = common.slice_index_two_points(pt0, pt1)

        # generate random source
        if is_array:
            shape = common.shape_two_points(pt0, pt1)
            value = np.random.rand(*shape).astype(np.float32)
        else:
            value = np.random.ranf()

        # instance
        fields = Fields(nx, ny, nz, '', 'single', 0, mpi_type=mpi_type)

        tfunc = lambda tstep: np.sin(0.03*tstep)
        incident = DirectIncident(fields, str_f, pt0, pt1, tfunc, value) 

        # host allocations
        eh = np.zeros(fields.ns_pitch, dtype=fields.dtype)
        getf = GetFields(fields, str_f, pt0, pt1)

        # verify
        eh[slices] = fields.dtype(value) * fields.dtype(tfunc(1))
        fields.update_e()
        fields.update_h()
        fields.enqueue_barrier()

        original = eh[slices]
        getf.get_event().wait()
        copy = getf.get_fields()
        norm = np.linalg.norm(original - copy)
        self.assertEqual(norm, 0, '%s, %g' % (self.args, norm))
示例#12
0
    def __init__(self, fields, str_f, pt0, pt1):
        """
        """

        common.check_type('fields', fields, (Fields, BufferFields))
        common.check_type('str_f', str_f, (str, list, tuple), str)
        common.check_type('pt0', pt0, (list, tuple), int)
        common.check_type('pt1', pt1, (list, tuple), int)

        # local variables
        str_fs = common.convert_to_tuple(str_f)

        for strf in str_fs:
            strf_list = ['ex', 'ey', 'ez', 'hx', 'hy', 'hz']
            common.check_value('str_f', strf, strf_list)

        for axis, n, p0, p1 in zip(['x', 'y', 'z'], fields.ns, pt0, pt1):
            common.check_value('pt0 %s' % axis, p0, range(n))
            common.check_value('pt1 %s' % axis, p1, range(n))

        # allocation
        shape = common.shape_two_points(pt0, pt1, len(str_fs))
        host_array = np.zeros(shape, dtype=fields.dtype)

        split_host_array = np.split(host_array, len(str_fs))
        split_host_array_dict = dict(zip(str_fs, split_host_array))

        # global variables
        self.mainf = fields
        self.str_fs = str_fs
        self.slice_xyz = common.slices_two_points(pt0, pt1)

        self.host_array = host_array
        self.split_host_array_dict = split_host_array_dict
示例#13
0
    def __init__(self,
                 fields,
                 str_f,
                 pt0,
                 pt1,
                 tfunc,
                 spatial_value=1.,
                 is_overwrite=False):
        """
        """

        common.check_type('fields', fields, Fields)
        common.check_value('str_f', str_f,
                           ('ex', 'ey', 'ez', 'hx', 'hy', 'hz'))
        common.check_type('pt0', pt0, (list, tuple), (int, float))
        common.check_type('pt1', pt1, (list, tuple), (int, float))
        common.check_type('tfunc', tfunc, types.FunctionType)
        common.check_type('spatial_value', spatial_value, \
                (np.ndarray, np.number, types.FloatType, types.IntType) )
        common.check_type('is_overwrite', is_overwrite, bool)

        pt0 = list(common.convert_indices(fields.ns, pt0))
        pt1 = list(common.convert_indices(fields.ns, pt1))

        # local variables
        e_or_h = str_f[0]
        dtype = fields.dtype
        is_array = True if isinstance(spatial_value, np.ndarray) else False

        for axis, n, p0, p1 in zip(['x', 'y', 'z'], fields.ns, pt0, pt1):
            common.check_value('pt0 %s' % axis, p0, range(n))
            common.check_value('pt1 %s' % axis, p1, range(n))

        if is_array:
            shape = common.shape_two_points(pt0, pt1)
            assert shape == spatial_value.shape, \
                    'shape mismatch : %s, %s' % (shape, spatial_value.shape)
            assert dtype == spatial_value.dtype, \
                    'dtype mismatch : %s, %s' % (dtype, spatial_value.dtype)
        else:
            spatial_value = dtype(spatial_value)

        # create the SetFields instance
        setf = SetFields(fields, str_f, pt0, pt1, is_array, is_overwrite)

        # global variables
        self.mainf = fields
        self.tfunc = tfunc
        self.setf = setf
        self.spatial_value = spatial_value

        self.e_or_h = e_or_h
        self.tstep = 1

        # append to the update list
        self.priority_type = 'incident'
        fields.append_instance(self)
    def __init__(self, fields, str_f, pt0, pt1):
        """
        """

        common.check_type('fields', fields, Fields)
        common.check_type('str_f', str_f, (str, list, tuple), str)
        common.check_type('pt0', pt0, (list, tuple), int)
        common.check_type('pt1', pt1, (list, tuple), int)

        # local variables
        str_fs = common.convert_to_tuple(str_f)
        dtype_str_list = fields.dtype_str_list

        for strf in str_fs:
            strf_list = ['ex', 'ey', 'ez', 'hx', 'hy', 'hz']
            common.check_value('str_f', strf, strf_list)

        for axis, n, p0, p1 in zip(['x', 'y', 'z'], fields.ns, pt0, pt1):
            common.check_value('pt0 %s' % axis, p0, range(n))
            common.check_value('pt1 %s' % axis, p1, range(n))

        # program
        macros = ['NMAX', 'XID', 'YID', 'ZID', \
                'ARGS', \
                'TARGET', 'SOURCE', 'OVERWRITE', \
                'DTYPE', 'PRAGMA_fp64']

        values = common_gpu.macro_replace_list(pt0, pt1) + \
                ['__global DTYPE *source', \
                'target[sub_idx]', 'source[idx]', '='] + \
                dtype_str_list

        ksrc = common.replace_template_code( \
                open(common_gpu.src_path + 'copy.cl').read(), macros, values)
        program = cl.Program(fields.context, ksrc).build()

        # allocation
        source_bufs = [fields.get_buf(str_f) for str_f in str_fs]
        shape = common.shape_two_points(pt0, pt1, len(str_fs))

        host_array = np.zeros(shape, dtype=fields.dtype)
        split_host_array = np.split(host_array, len(str_fs))
        split_host_array_dict = dict(zip(str_fs, split_host_array))

        target_buf = cl.Buffer( \
                fields.context, \
                cl.mem_flags.READ_WRITE | cl.mem_flags.COPY_HOST_PTR, \
                hostbuf=host_array)

        # global variables
        self.mainf = fields
        self.program = program
        self.source_bufs = source_bufs
        self.target_buf = target_buf
        self.host_array = host_array
        self.split_host_array_dict = split_host_array_dict
    def __init__(self, fields, str_f, pt0, pt1):
        """
        """

        common.check_type('fields', fields, Fields)
        common.check_type('str_f', str_f, (str, list, tuple), str)
        common.check_type('pt0', pt0, (list, tuple), (int, float))
        common.check_type('pt1', pt1, (list, tuple), (int, float))

        pt0 = list(common.convert_indices(fields.ns, pt0))
        pt1 = list(common.convert_indices(fields.ns, pt1))

        # local variables
        str_fs = common.convert_to_tuple(str_f)
        dtype_str_list = fields.dtype_str_list

        for strf in str_fs:
            strf_list = ['ex', 'ey', 'ez', 'hx', 'hy', 'hz']
            common.check_value('str_f', strf, strf_list)

        for axis, n, p0, p1 in zip(['x', 'y', 'z'], fields.ns, pt0, pt1):
            common.check_value('pt0 %s' % axis, p0, range(n))
            common.check_value('pt1 %s' % axis, p1, range(n))

        # program
        macros = ['NMAX', 'XID', 'YID', 'ZID', \
                'ARGS', \
                'TARGET', 'SOURCE', 'OVERWRITE', \
                'DTYPE']

        values = common_gpu.macro_replace_list(pt0, pt1) + \
                ['DTYPE *source', \
                'target[sub_idx]', 'source[idx]', '='] + \
                dtype_str_list

        ksrc = common.replace_template_code( \
                open(common_gpu.src_path + 'copy.cu').read(), macros, values)
        program = SourceModule(ksrc)
        kernel_copy = program.get_function('copy')

        # allocation
        source_bufs = [fields.get_buf(str_f) for str_f in str_fs]
        shape = common.shape_two_points(pt0, pt1, len(str_fs))

        host_array = np.zeros(shape, fields.dtype)
        split_host_array = np.split(host_array, len(str_fs))
        split_host_array_dict = dict(zip(str_fs, split_host_array))
        target_buf = cuda.to_device(host_array)

        # global variables
        self.mainf = fields
        self.kernel_copy = kernel_copy
        self.source_bufs = source_bufs
        self.target_buf = target_buf
        self.host_array = host_array
        self.split_host_array_dict = split_host_array_dict
    def runTest(self):
        nx, ny, nz, str_f, pt0, pt1, is_array = self.args

        slices = common.slices_two_points(pt0, pt1)
        str_fs = common.convert_to_tuple(str_f)

        # instance
        gpu_devices = common_gpu.gpu_device_list(print_info=False)
        context = cl.Context(gpu_devices)

        mainf_list = [gpu.Fields(context, device, nx, ny, nz) \
                for device in gpu_devices]
        mainf_list.append(cpu.Fields(nx, ny, nz))
        nodef = Fields(mainf_list)
        dtype = nodef.dtype
        anx = nodef.accum_nx_list

        getf = GetFields(nodef, str_f, (0, 0, 0),
                         (nodef.nx - 1, ny - 1, nz - 1))
        setf = SetFields(nodef, str_f, pt0, pt1, is_array)

        # generate random source
        if is_array:
            shape = common.shape_two_points(pt0, pt1, len(str_fs))
            value = np.random.rand(*shape).astype(nodef.dtype)
            split_value = np.split(value, len(str_fs))
            split_value_dict = dict(zip(str_fs, split_value))
        else:
            value = np.random.ranf()

        # host allocations
        global_ehs = [np.zeros(nodef.ns, dtype) for i in range(6)]
        eh_dict = dict(zip(['ex', 'ey', 'ez', 'hx', 'hy', 'hz'], global_ehs))

        # verify
        for str_f in str_fs:
            if is_array:
                eh_dict[str_f][slices] = split_value_dict[str_f]
            else:
                eh_dict[str_f][slices] = value

        setf.set_fields(value)
        gpu_getf = gpu.GetFields(mainf_list[0], str_fs, (0, 0, 0),
                                 (nx - 1, ny - 1, nz - 1))
        gpu_getf.get_event().wait()
        getf.wait()

        for str_f in str_fs:
            original = eh_dict[str_f]
            copy = getf.get_fields(str_f)
            norm = np.linalg.norm(original - copy)
            #if norm != 0:
            #print '\ngpu getf\n', gpu_getf.get_fields(str_f)
            #print original[slices]
            #print copy[slices]
            self.assertEqual(norm, 0, '%s, %g, %s' % (self.args, norm, str_f))
示例#17
0
    def __init__(self, fields, str_f, pt0, pt1):
        """
        """

        common.check_type('fields', fields, Fields)
        common.check_type('str_f', str_f, (str, list, tuple), str)
        common.check_type('pt0', pt0, (list, tuple), (int, float))
        common.check_type('pt1', pt1, (list, tuple), (int, float))

        pt0 = list( common.convert_indices(fields.ns, pt0) )
        pt1 = list( common.convert_indices(fields.ns, pt1) )

        # local variables
        str_fs = common.convert_to_tuple(str_f)
        dtype_str_list = fields.dtype_str_list

        for strf in str_fs:
            strf_list = ['ex', 'ey', 'ez', 'hx', 'hy', 'hz']
            common.check_value('str_f', strf, strf_list)

        for axis, n, p0, p1 in zip(['x', 'y', 'z'], fields.ns, pt0, pt1):
            common.check_value('pt0 %s' % axis, p0, range(n))
            common.check_value('pt1 %s' % axis, p1, range(n))

        # program
        macros = ['NMAX', 'XID', 'YID', 'ZID', \
                'ARGS', \
                'TARGET', 'SOURCE', 'OVERWRITE', \
                'DTYPE']

        values = common_gpu.macro_replace_list(pt0, pt1) + \
                ['DTYPE *source', \
                'target[sub_idx]', 'source[idx]', '='] + \
                dtype_str_list

        ksrc = common.replace_template_code( \
                open(common_gpu.src_path + 'copy.cu').read(), macros, values)
        program = SourceModule(ksrc)
        kernel_copy = program.get_function('copy')

        # allocation
        source_bufs = [fields.get_buf(str_f) for str_f in str_fs]
        shape = common.shape_two_points(pt0, pt1, len(str_fs))

        host_array = np.zeros(shape, fields.dtype)
        split_host_array = np.split(host_array, len(str_fs))
        split_host_array_dict = dict( zip(str_fs, split_host_array) ) 
        target_buf = cuda.to_device(host_array)

        # global variables
        self.mainf = fields
        self.kernel_copy = kernel_copy
        self.source_bufs = source_bufs
        self.target_buf = target_buf
        self.host_array = host_array
        self.split_host_array_dict = split_host_array_dict
    def runTest(self):
        nx, ny, nz, str_f, pt0, pt1, is_array = self.args

        slices = common.slices_two_points(pt0, pt1)
        str_fs = common.convert_to_tuple(str_f)

        # instance
        gpu_devices = common_gpu.gpu_device_list(print_info=False)
        context = cl.Context(gpu_devices)

        mainf_list = [gpu.Fields(context, device, nx, ny, nz) \
                for device in gpu_devices]
        mainf_list.append( cpu.Fields(nx, ny, nz) )
        nodef = Fields(mainf_list)
        dtype = nodef.dtype
        anx = nodef.accum_nx_list

        getf = GetFields(nodef, str_f, (0, 0, 0), (nodef.nx-1, ny-1, nz-1)) 
        setf = SetFields(nodef, str_f, pt0, pt1, is_array) 
        
        # generate random source
        if is_array:
            shape = common.shape_two_points(pt0, pt1, len(str_fs))
            value = np.random.rand(*shape).astype(nodef.dtype)
            split_value = np.split(value, len(str_fs))
            split_value_dict = dict( zip(str_fs, split_value) )
        else:
            value = np.random.ranf()

        # host allocations
        global_ehs = [np.zeros(nodef.ns, dtype) for i in range(6)]
        eh_dict = dict( zip(['ex', 'ey', 'ez', 'hx', 'hy', 'hz'], global_ehs) )

        # verify
        for str_f in str_fs:
            if is_array:
                eh_dict[str_f][slices] = split_value_dict[str_f]
            else:
                eh_dict[str_f][slices] = value

        setf.set_fields(value)
        gpu_getf = gpu.GetFields(mainf_list[0], str_fs, (0, 0, 0), (nx-1, ny-1, nz-1))
        gpu_getf.get_event().wait()
        getf.wait()
        

        for str_f in str_fs:
            original = eh_dict[str_f]
            copy = getf.get_fields(str_f)
            norm = np.linalg.norm(original - copy)
            #if norm != 0:
                #print '\ngpu getf\n', gpu_getf.get_fields(str_f)
                #print original[slices]
                #print copy[slices]
            self.assertEqual(norm, 0, '%s, %g, %s' % (self.args, norm, str_f))
示例#19
0
    def set_savefields(self, str_f, pt0, pt1, tstep_range, dir_path, tag=0):
        common.check_type('str_f', str_f, (str, list, tuple), str)
        common.check_type('pt0', pt0, (list, tuple), (int, float))
        common.check_type('pt1', pt1, (list, tuple), (int, float))
        common.check_type('tstep_range', tstep_range, (list, tuple), int)
        common.check_type('dir_path', dir_path, str)
        common.check_type('tag', tag, int)

        pt0 = common.convert_indices(self.ns, pt0)
        pt1 = common.convert_indices(self.ns, pt1)
        t0 = common.convert_index(self.max_tstep, tstep_range[0])
        t1 = common.convert_index(self.max_tstep, tstep_range[1]) + 1
        tgap = tstep_range[2]
        tmax = self.max_tstep

        tag = tag if tag not in self.savef_tag_list else max(self.savef_tag_list)+1
        self.savef_tag_list.append(tag)

        if is_mpi:
            overlap = common.overlap_two_regions(self.node_pt0, self.node_pt1, pt0, pt1)
            if overlap != None:
                sx0, sy0, sz0 = self.node_pt0
                ox0, oy0, oz0 = overlap[0]
                ox1, oy1, oz1 = overlap[1]

                local_pt0 = (ox0-sx0, oy0-sy0, oz0-sz0)
                local_pt1 = (ox1-sx0, oy1-sy0, oz1-sz0)

                savef = node.SaveFields(self.nodef, str_f, local_pt0, local_pt1, dir_path, tag, tmax, True, rank)
                self.savef_list.append(savef)
        else:
            savef = node.SaveFields(self.nodef, str_f, pt0, pt1, dir_path, tag, tmax)
            self.savef_list.append(savef)

        # save the subdomain informations as pickle
        if self.is_master:
            if is_mpi:
                divide_info_dict = common_mpi.divide_info_dict(size, self.mpi_shape, pt0, pt1, self.asn_dict)
            else:
                divide_info_dict = { \
                        'shape': common.shape_two_points(pt0, pt1), \
                        'pt0': pt0, \
                        'pt1': pt1, \
                        'anx_list': self.nodef.accum_nx_list }

            divide_info_dict['str_fs'] = common.convert_to_tuple(str_f)
            divide_info_dict['tmax'] = tmax
            divide_info_dict['tgap'] = tgap
            pkl_file = open(dir_path + 'divide_info.pkl', 'wb')
            pickle.dump(divide_info_dict, pkl_file)
            pkl_file.close()

        self.t0 = t0
        self.t1 = t1
        self.tgap = tgap
示例#20
0
    def __init__(self, fields, str_f, pt0, pt1, tfunc, spatial_value=1., is_overwrite=False):
        """
        """

        common.check_type('fields', fields, Fields)
        common.check_value('str_f', str_f, ('ex', 'ey', 'ez', 'hx', 'hy', 'hz'))
        common.check_type('pt0', pt0, (list, tuple), int)
        common.check_type('pt1', pt1, (list, tuple), int)
        common.check_type('tfunc', tfunc, types.FunctionType)
        common.check_type('spatial_value', spatial_value, \
                (np.ndarray, np.number, types.FloatType, types.IntType) )
        common.check_type('is_overwrite', is_overwrite, bool)

        # local variables
        e_or_h = str_f[0]
        dtype = fields.dtype
        is_array = True if isinstance(spatial_value, np.ndarray) else False

        for axis, n, p0, p1 in zip(['x', 'y', 'z'], fields.ns, pt0, pt1):
            common.check_value('pt0 %s' % axis, p0, range(n))
            common.check_value('pt1 %s' % axis, p1, range(n))

        if is_array:
            shape = common.shape_two_points(pt0, pt1)
            assert shape == spatial_value.shape, \
                    'shape mismatch : %s, %s' % (shape, spatial_value.shape)
            assert dtype == spatial_value.dtype, \
                    'dtype mismatch : %s, %s' % (dtype, spatial_value.dtype)
        else:
            spatial_value = dtype(spatial_value)

        # create the SetFields instance
        setf = SetFields(fields, str_f, pt0, pt1, is_array, is_overwrite)

        # global variables
        self.mainf = fields
        self.dtype = dtype
        self.tfunc = tfunc
        self.setf = setf

        self.spatial_value = spatial_value
        self.tstep = 1

        # global functions
        if e_or_h == 'e':
            self.update_e = self.update
            self.update_h = lambda : None

        elif e_or_h == 'h':
            self.update_e = lambda : None 
            self.update_h = self.update

        # append to the update list
        self.priority_type = 'incident'
        fields.append_instance(self)
示例#21
0
    def create_instance(self, fields, fields_pt0, fields_pt1, overlap_pt0, overlap_pt1):
        sx0, sy0, sz0 = fields_pt0
        ox0, oy0, oz0 = overlap_pt0
        ox1, oy1, oz1 = overlap_pt1

        subf_pt0 = (ox0-sx0, oy0-sy0, oz0-sz0)
        subf_pt1 = (ox1-sx0, oy1-sy0, oz1-sz0)

        if self.is_array:
            x0, y0, z0 = self.pt0
            svalue_pt0 = (ox0-x0, oy0-y0, oz0-z0)
            svalue_pt1 = (ox1-x0, oy1-y0, oz1-z0)

            dummied_shape = common.shape_two_points(self.pt0, self.pt1, is_dummy=True)
            dummied_shaped_svalue = self.spatial_value.reshape(dummied_shape)
            dummied_slices = [slice(p0, p1+1) for p0, p1 in zip(svalue_pt0, svalue_pt1)]
            subdomain_shape = common.shape_two_points(svalue_pt0, svalue_pt1)
            svalue_subdomain = dummied_shaped_svalue[dummied_slices].reshape(subdomain_shape).copy()
        else:
            svalue_subdomain = self.spatial_value

        getattr(self, fields.device_type).IncidentDirect( \
                fields, self.str_f, subf_pt0, subf_pt1, self.tfunc, svalue_subdomain, self.is_overwrite)
示例#22
0
    def __init__(self, fields, str_f, pt0, pt1):
        """
        """

        common.check_type("fields", fields, Fields)
        common.check_type("str_f", str_f, (str, list, tuple), str)
        common.check_type("pt0", pt0, (list, tuple), int)
        common.check_type("pt1", pt1, (list, tuple), int)

        # local variables
        str_fs = common.convert_to_tuple(str_f)
        dtype_str_list = fields.dtype_str_list

        for strf in str_fs:
            strf_list = ["ex", "ey", "ez", "hx", "hy", "hz"]
            common.check_value("str_f", strf, strf_list)

        for axis, n, p0, p1 in zip(["x", "y", "z"], fields.ns, pt0, pt1):
            common.check_value("pt0 %s" % axis, p0, range(n))
            common.check_value("pt1 %s" % axis, p1, range(n))

        # program
        macros = ["NMAX", "XID", "YID", "ZID", "ARGS", "TARGET", "SOURCE", "OVERWRITE", "DTYPE", "PRAGMA_fp64"]

        values = (
            common_gpu.macro_replace_list(pt0, pt1)
            + ["__global DTYPE *source", "target[sub_idx]", "source[idx]", "="]
            + dtype_str_list
        )

        ksrc = common.replace_template_code(open(common_gpu.src_path + "copy.cl").read(), macros, values)
        program = cl.Program(fields.context, ksrc).build()

        # allocation
        source_bufs = [fields.get_buf(str_f) for str_f in str_fs]
        shape = common.shape_two_points(pt0, pt1, len(str_fs))

        host_array = np.zeros(shape, dtype=fields.dtype)
        split_host_array = np.split(host_array, len(str_fs))
        split_host_array_dict = dict(zip(str_fs, split_host_array))

        target_buf = cl.Buffer(fields.context, cl.mem_flags.READ_WRITE | cl.mem_flags.COPY_HOST_PTR, hostbuf=host_array)

        # global variables
        self.mainf = fields
        self.program = program
        self.source_bufs = source_bufs
        self.target_buf = target_buf
        self.host_array = host_array
        self.split_host_array_dict = split_host_array_dict
示例#23
0
    def __init__(self, fields, str_f, pt0, pt1, source_is_array=False):
        """
        """

        common.check_type('fields', fields, Fields)
        common.check_type('str_f', str_f, (str, list, tuple), str)
        common.check_type('pt0', pt0, (list, tuple), int)
        common.check_type('pt1', pt1, (list, tuple), int)
        common.check_type('source_is_array', source_is_array, bool)

        self.mainf = mainf = fields
        str_fs = common.convert_to_tuple(str_f)

        # program
        macros = ['NMAX', 'XID', 'YID', 'ZID', \
                'ARGS', \
                'TARGET', 'SOURCE', \
                'DTYPE', 'PRAGMA_fp64']

        if source_is_array:
            values = macro_replace_list(pt0, pt1) + \
                    ['__global DTYPE *source', \
                    'target[idx]', 'source[sub_idx]'] + mainf.dtype_str_list[:2]
        else:
            values = macro_replace_list(pt0, pt1) + \
                    ['DTYPE source', \
                    'target[idx]', 'source'] + mainf.dtype_str_list[:2]

        ksrc = common.replace_template_code( \
                open(common_gpu.src_path + 'subdomain.cl').read(), macros, values)
        self.program = cl.Program(mainf.context, ksrc).build()

        # allocation
        self.target_bufs = [mainf.get_buf(str_f) for str_f in str_fs]
        shape = list(common.shape_two_points(pt0, pt1))
        shape[0] *= len(str_fs)

        if source_is_array:
            tmp_array = np.zeros(shape, dtype=mainf.dtype)
            self.source_buf = cl.Buffer( \
                    mainf.context, \
                    cl.mem_flags.READ_WRITE | cl.mem_flags.COPY_HOST_PTR, \
                    hostbuf=tmp_array)
            self.set_fields = self.set_fields_spatial_value
        else:
            self.set_fields = self.set_fields_single_value
示例#24
0
    def __init__(self, fields, str_f, pt0, pt1, source_is_array=False):
        """
        """

        common.check_type('fields', fields, Fields)
        common.check_type('str_f', str_f, (str, list, tuple), str)
        common.check_type('pt0', pt0, (list, tuple), int)
        common.check_type('pt1', pt1, (list, tuple), int)
        common.check_type('source_is_array', source_is_array, bool)

        self.mainf = mainf = fields
        str_fs = common.convert_to_tuple(str_f)

		# program
        macros = ['NMAX', 'XID', 'YID', 'ZID', \
                'ARGS', \
                'TARGET', 'SOURCE', \
                'DTYPE', 'PRAGMA_fp64']

        if source_is_array:
            values = macro_replace_list(pt0, pt1) + \
                    ['__global DTYPE *source', \
                    'target[idx]', 'source[sub_idx]'] + mainf.dtype_str_list[:2]
        else:
            values = macro_replace_list(pt0, pt1) + \
                    ['DTYPE source', \
                    'target[idx]', 'source'] + mainf.dtype_str_list[:2]

        ksrc = common.replace_template_code( \
                open(common_gpu.src_path + 'subdomain.cl').read(), macros, values)
        self.program = cl.Program(mainf.context, ksrc).build()

		# allocation
        self.target_bufs = [mainf.get_buf(str_f) for str_f in str_fs]
        shape = list( common.shape_two_points(pt0, pt1) )
        shape[0] *= len(str_fs)

        if source_is_array:
            tmp_array = np.zeros(shape, dtype=mainf.dtype)
            self.source_buf = cl.Buffer( \
                    mainf.context, \
                    cl.mem_flags.READ_WRITE | cl.mem_flags.COPY_HOST_PTR, \
                    hostbuf=tmp_array)
            self.set_fields = self.set_fields_spatial_value
        else:
            self.set_fields = self.set_fields_single_value
示例#25
0
    def runTest(self):
        if len(self.args) == 6:
            nx, ny, nz, str_f, pt0, pt1 = self.args
            src_is_array = False
        elif len(self.args) == 7:
            nx, ny, nz, str_f, pt0, pt1, src_is_array = self.args

        slidx = common.slice_index_two_points(pt0, pt1)
        str_fs = common.convert_to_tuple(str_f)

        # instance
        gpu_devices = common_gpu.gpu_device_list(print_info=False)
        context = cl.Context(gpu_devices)
        device = gpu_devices[0]
        fields = Fields(context, device, nx, ny, nz, '')
        setf = SetFields(fields, str_f, pt0, pt1, src_is_array)

        # generate random source
        if src_is_array:
            shape = list(common.shape_two_points(pt0, pt1))
            shape[0] *= len(str_fs)
            value = np.random.rand(*shape).astype(fields.dtype)
            split_value = np.split(value, len(str_fs))
            split_value_dict = dict(zip(str_fs, split_value))
        else:
            value = np.random.ranf()

        # host allocations
        eh_dict = {}
        for sf in str_fs:
            eh_dict[sf] = np.zeros(fields.ns, dtype=fields.dtype)
        gpu_eh = np.zeros(fields.ns, dtype=fields.dtype)

        # verify
        for str_f in str_fs:
            if src_is_array:
                eh_dict[str_f][slidx] = split_value_dict[str_f]
            else:
                eh_dict[str_f][slidx] = value

        setf.set_fields(value)

        for str_f in str_fs:
            cl.enqueue_copy(fields.queue, gpu_eh, fields.get_buf(str_f))
            self.assertEqual(
                np.abs(eh_dict[str_f] - gpu_eh).max(), 0, self.args)
示例#26
0
    def runTest(self):
        if len(self.args) == 6:
            nx, ny, nz, str_f, pt0, pt1 = self.args
            src_is_array = False
        elif len(self.args) == 7:
            nx, ny, nz, str_f, pt0, pt1, src_is_array = self.args

        slidx = common.slice_index_two_points(pt0, pt1)
        str_fs = common.convert_to_tuple(str_f)

        # instance
        gpu_devices = common_gpu.gpu_device_list(print_info=False)
        context = cl.Context(gpu_devices)
        device = gpu_devices[0]
        fields = Fields(context, device, nx, ny, nz, '')
        setf = SetFields(fields, str_f, pt0, pt1, src_is_array) 
        
        # generate random source
        if src_is_array:
            shape = list( common.shape_two_points(pt0, pt1) )
            shape[0] *= len(str_fs)
            value = np.random.rand(*shape).astype(fields.dtype)
            split_value = np.split(value, len(str_fs))
            split_value_dict = dict( zip(str_fs, split_value) )
        else:
            value = np.random.ranf()

        # host allocations
        eh_dict = {}
        for sf in str_fs:
            eh_dict[sf] = np.zeros(fields.ns, dtype=fields.dtype)
        gpu_eh = np.zeros(fields.ns, dtype=fields.dtype)

        # verify
        for str_f in str_fs:
            if src_is_array:
                eh_dict[str_f][slidx] = split_value_dict[str_f]
            else:
                eh_dict[str_f][slidx] = value

        setf.set_fields(value)

        for str_f in str_fs:
            cl.enqueue_copy(fields.queue, gpu_eh, fields.get_buf(str_f))
            self.assertEqual(np.abs(eh_dict[str_f] - gpu_eh).max(), 0, self.args)
    def runTest(self):
        nx, ny, nz, str_f, pt0, pt1, is_array = self.args

        slidx = common.slices_two_points(pt0, pt1)
        str_fs = common.convert_to_tuple(str_f)

        # instance
        gpu_devices = common_gpu.gpu_device_list(print_info=False)
        context = cl.Context(gpu_devices)
        device = gpu_devices[0]
        qtask = QueueTask()
        fields = Fields(context, device, qtask, nx, ny, nz, '', 'single')
        setf = SetFields(fields, str_f, pt0, pt1, is_array) 
        
        # generate random source
        if is_array:
            shape = common.shape_two_points(pt0, pt1, len(str_fs))
            value = np.random.rand(*shape).astype(fields.dtype)
            split_value = np.split(value, len(str_fs))
            split_value_dict = dict( zip(str_fs, split_value) )
        else:
            value = np.random.ranf()

        # host allocations
        ehs = [np.zeros(fields.ns, dtype=fields.dtype) for i in range(6)]
        eh_dict = dict( zip(['ex', 'ey', 'ez', 'hx', 'hy', 'hz'], ehs) )
        gpu_eh = np.zeros(fields.ns_pitch, dtype=fields.dtype)

        # verify
        for str_f in str_fs:
            if is_array:
                eh_dict[str_f][slidx] = split_value_dict[str_f]
            else:
                eh_dict[str_f][slidx] = value

        setf.set_fields(value)
        setf.mainf.enqueue_barrier()

        for str_f in str_fs:
            cl.enqueue_copy(fields.queue, gpu_eh, fields.get_buf(str_f))
            original = eh_dict[str_f]
            copy = gpu_eh[:,:,fields.slice_z]
            norm = np.linalg.norm(original - copy)
            self.assertEqual(norm, 0, '%s, %g' % (self.args, norm))
    def runTest(self):
        nx, ny, nz, str_f, pt0, pt1, is_array = self.args

        slices = common.slice_index_two_points(pt0, pt1)

        # generate random source
        if is_array:
            shape = common.shape_two_points(pt0, pt1)
            value = np.random.rand(*shape).astype(np.float32)
        else:
            value = np.random.ranf()

        # instance
        gpu_devices = common_gpu.gpu_device_list(print_info=False)
        context = cl.Context(gpu_devices)

        mainf_list = [gpu.Fields(context, device, nx, ny, nz) \
                for device in gpu_devices]
        mainf_list.append(cpu.Fields(nx, ny, nz))
        nodef = NodeFields(mainf_list)
        dtype = nodef.dtype
        anx = nodef.accum_nx_list

        tfunc = lambda tstep: np.sin(0.03 * tstep)
        incident = NodeDirectIncident(nodef, str_f, pt0, pt1, tfunc, value)

        # allocations for verify
        eh = np.zeros(nodef.ns, dtype)
        getf = NodeGetFields(nodef, str_f, pt0, pt1)

        # verify
        eh[slices] = dtype(value) * dtype(tfunc(1))

        e_or_h = str_f[0]
        nodef.update_e()
        nodef.update_h()
        getf.wait()

        original = eh[slices]
        copy = getf.get_fields(str_f)
        norm = np.linalg.norm(original - copy)
        self.assertEqual(norm, 0, '%s, %g' % (self.args, norm))
    def runTest(self):
        nx, ny, nz, str_f, pt0, pt1, is_array = self.args

        slices = common.slice_index_two_points(pt0, pt1)

        # generate random source
        if is_array:
            shape = common.shape_two_points(pt0, pt1)
            value = np.random.rand(*shape).astype(np.float32)
        else:
            value = np.random.ranf()

        # instance
        gpu_devices = common_gpu.gpu_device_list(print_info=False)
        context = cl.Context(gpu_devices)

        mainf_list = [gpu.Fields(context, device, nx, ny, nz) \
                for device in gpu_devices]
        mainf_list.append( cpu.Fields(nx, ny, nz) )
        nodef = NodeFields(mainf_list)
        dtype = nodef.dtype
        anx = nodef.accum_nx_list

        tfunc = lambda tstep: np.sin(0.03*tstep)
        incident = NodeDirectIncident(nodef, str_f, pt0, pt1, tfunc, value) 

        # allocations for verify
        eh = np.zeros(nodef.ns, dtype)
        getf = NodeGetFields(nodef, str_f, pt0, pt1)

        # verify
        eh[slices] = dtype(value) * dtype(tfunc(1))

        e_or_h = str_f[0]
        nodef.update_e()
        nodef.update_h()
        getf.wait()

        original = eh[slices]
        copy = getf.get_fields(str_f)
        norm = np.linalg.norm(original - copy)
        self.assertEqual(norm, 0, '%s, %g' % (self.args, norm))
    def runTest(self):
        nx, ny, nz, str_f, pt0, pt1, is_array = self.args

        slidx = common.slices_two_points(pt0, pt1)
        str_fs = common.convert_to_tuple(str_f)

        # instance
        fields = Fields(0, nx, ny, nz, '', 'single')
        setf = SetFields(fields, str_f, pt0, pt1, is_array) 
        
        # generate random source
        if is_array:
            shape = common.shape_two_points(pt0, pt1, len(str_fs))
            value = np.random.rand(*shape).astype(fields.dtype)
            split_value = np.split(value, len(str_fs))
            split_value_dict = dict( zip(str_fs, split_value) )
        else:
            value = np.random.ranf()

        # host allocations
        ehs = [np.zeros(fields.ns, dtype=fields.dtype) for i in range(6)]
        eh_dict = dict( zip(['ex', 'ey', 'ez', 'hx', 'hy', 'hz'], ehs) )
        gpu_eh = np.zeros(fields.ns_pitch, dtype=fields.dtype)

        # verify
        for str_f in str_fs:
            if is_array:
                eh_dict[str_f][slidx] = split_value_dict[str_f]
            else:
                eh_dict[str_f][slidx] = value

        setf.set_fields(value)

        for str_f in str_fs:
            cuda.memcpy_dtoh(gpu_eh, fields.get_buf(str_f))
            original = eh_dict[str_f]
            copy = gpu_eh[:,:,fields.slice_z]
            norm = np.linalg.norm(original - copy)
            self.assertEqual(norm, 0, '%s, %g' % (self.args, norm))

        fields.context_pop()
示例#31
0
    def runTest(self):
        nx, ny, nz, str_f, pt0, pt1, is_array = self.args
        slice_xyz = common.slices_two_points(pt0, pt1)

        # generate random source
        if is_array:
            shape = common.shape_two_points(pt0, pt1)
            value = np.random.rand(*shape).astype(np.float32)
        else:
            value = np.random.ranf()

        # instance
        gpu_devices = common_gpu.gpu_device_list(print_info=False)
        context = cl.Context(gpu_devices)
        device = gpu_devices[0]
        qtask = QueueTask()
        fields = Fields(context, device, qtask, nx, ny, nz, '', 'single')

        tfunc = lambda tstep: np.sin(0.03 * tstep)
        incident = IncidentDirect(fields, str_f, pt0, pt1, tfunc, value)

        # host allocations
        eh = np.zeros(fields.ns_pitch, dtype=fields.dtype)

        # verify
        eh[slice_xyz] = fields.dtype(value) * fields.dtype(tfunc(1))
        fields.update_e()
        fields.update_h()
        fields.enqueue_barrier()

        copy_eh_buf = fields.get_buf(str_f)
        copy_eh = np.zeros_like(eh)
        cl.enqueue_copy(fields.queue, copy_eh, copy_eh_buf)

        original = eh[slice_xyz]
        copy = copy_eh[slice_xyz]
        norm = np.linalg.norm(original - copy)
        self.assertEqual(norm, 0, '%s, %g' % (self.args, norm))
    def runTest(self):
        nx, ny, nz, str_f, pt0, pt1, is_array = self.args
        slice_xyz = common.slices_two_points(pt0, pt1)

        # generate random source
        if is_array:
            shape = common.shape_two_points(pt0, pt1)
            value = np.random.rand(*shape).astype(np.float32)
        else:
            value = np.random.ranf()

        # instance
        gpu_devices = common_gpu.gpu_device_list(print_info=False)
        context = cl.Context(gpu_devices)
        device = gpu_devices[0]
        qtask = QueueTask()
        fields = Fields(context, device, qtask, nx, ny, nz, '', 'single')

        tfunc = lambda tstep: np.sin(0.03*tstep)
        incident = IncidentDirect(fields, str_f, pt0, pt1, tfunc, value) 

        # host allocations
        eh = np.zeros(fields.ns_pitch, dtype=fields.dtype)

        # verify
        eh[slice_xyz] = fields.dtype(value) * fields.dtype(tfunc(1))
        fields.update_e()
        fields.update_h()
        fields.enqueue_barrier()

        copy_eh_buf = fields.get_buf(str_f)
        copy_eh = np.zeros_like(eh)
        cl.enqueue_copy(fields.queue, copy_eh, copy_eh_buf)

        original = eh[slice_xyz]
        copy = copy_eh[slice_xyz]
        norm = np.linalg.norm(original - copy)
        self.assertEqual(norm, 0, '%s, %g' % (self.args, norm))
示例#33
0
文件: drude.py 项目: steve1029/KEMP
    def __init__(self,
                 fields,
                 pt0,
                 pt1,
                 ep_inf,
                 drude_freq,
                 gamma,
                 mask_arrays=(1, 1, 1)):
        common.check_type('fields', fields, Fields)
        common.check_type('pt0', pt0, (list, tuple), (int, float))
        common.check_type('pt1', pt1, (list, tuple), (int, float))
        common.check_type('ep_inf', ep_inf, (int, float))
        common.check_type('drude_freq', drude_freq, (int, float))
        common.check_type('gamma', gamma, (int, float))
        common.check_type('mask_arrays', mask_arrays, (list, tuple),
                          (np.ndarray, types.IntType))

        # local variables
        pt0 = common.convert_indices(fields.ns, pt0)
        pt1 = common.convert_indices(fields.ns, pt1)
        dtype = fields.dtype

        for axis, n, p0, p1 in zip(['x', 'y', 'z'], fields.ns, pt0, pt1):
            common.check_value('pt0 %s' % axis, p0, range(n))
            common.check_value('pt1 %s' % axis, p1, range(n))

        for mask_array in mask_arrays:
            if isinstance(mask_array, np.ndarray):
                assert common.shape_two_points(pt0, pt1) == mask_array.shape, \
                       'shape mismatch : %s, %s' % (shape, mask_array.shape)

        # allocations
        shape = common.shape_two_points(pt0, pt1, is_dummy=True)
        psis = [np.zeros(shape, dtype) for i in range(3)]

        dt = fields.dt
        aa = (2 - gamma * dt) / (2 + gamma * dt)
        bb = drude_freq**2 * dt / (2 + gamma * dt)
        comm = 2 * ep_inf + bb * dt
        ca = 2 * dt / comm
        cb = -(aa + 3) * bb * dt / comm
        cc = -(aa + 1) * dt / comm
        cas = [ca * mask for mask in mask_arrays]
        cbs = [cb * mask for mask in mask_arrays]
        ccs = [cc * mask for mask in mask_arrays]

        # modify ce arrays
        slices = common.slices_two_points(pt0, pt1)
        for ce, ca in zip(fields.get_ces(), cas):
            ce[slices] = ca

        # global variables
        self.mainf = fields
        self.psis = psis
        self.cbs = cbs
        self.ccs = ccs
        self.pcs = aa, (aa + 1) * bb
        self.slices = slices

        # append to the update list
        self.priority_type = 'material'
        fields.append_instance(self)
示例#34
0
    def __init__(self, fields, str_f, pt0, pt1, is_array=False, is_overwrite=True):
        """
        """

        common.check_type("fields", fields, Fields)
        common.check_type("str_f", str_f, (str, list, tuple), str)
        common.check_type("pt0", pt0, (list, tuple), int)
        common.check_type("pt1", pt1, (list, tuple), int)
        common.check_type("is_array", is_array, bool)
        common.check_type("is_overwrite", is_overwrite, bool)

        # local variables
        str_fs = common.convert_to_tuple(str_f)
        dtype_str_list = fields.dtype_str_list
        overwrite_str = {True: "=", False: "+="}[is_overwrite]

        for strf in str_fs:
            strf_list = ["ex", "ey", "ez", "hx", "hy", "hz"]
            common.check_value("str_f", strf, strf_list)

        for axis, n, p0, p1 in zip(["x", "y", "z"], fields.ns, pt0, pt1):
            common.check_value("pt0 %s" % axis, p0, range(n))
            common.check_value("pt1 %s" % axis, p1, range(n))

        # program
        macros = ["NMAX", "XID", "YID", "ZID", "ARGS", "TARGET", "SOURCE", "OVERWRITE", "DTYPE", "PRAGMA_fp64"]

        if is_array:
            values = (
                common_gpu.macro_replace_list(pt0, pt1)
                + ["__global DTYPE *source", "target[idx]", "source[sub_idx]", overwrite_str]
                + dtype_str_list
            )
        else:
            values = (
                common_gpu.macro_replace_list(pt0, pt1)
                + ["DTYPE source", "target[idx]", "source", overwrite_str]
                + dtype_str_list
            )

        ksrc = common.replace_template_code(open(common_gpu.src_path + "copy.cl").read(), macros, values)
        program = cl.Program(fields.context, ksrc).build()

        # allocation
        target_bufs = [fields.get_buf(str_f) for str_f in str_fs]
        shape = common.shape_two_points(pt0, pt1, len(str_fs))

        if is_array:
            tmp_array = np.zeros(shape, dtype=fields.dtype)
            source_buf = cl.Buffer(
                fields.context, cl.mem_flags.READ_WRITE | cl.mem_flags.COPY_HOST_PTR, hostbuf=tmp_array
            )

        # global variabels and functions
        self.mainf = fields
        self.program = program
        self.target_bufs = target_bufs
        self.shape = shape

        if is_array:
            self.source_buf = source_buf
            self.set_fields = self.set_fields_spatial_value
        else:
            self.set_fields = self.set_fields_single_value
    def __init__(self,
                 node_fields,
                 str_f,
                 pt0,
                 pt1,
                 tfunc,
                 spatial_value=1.,
                 is_overwrite=False):
        """
        """

        common.check_type('node_fields', node_fields, Fields)
        common.check_value('str_f', str_f,
                           ('ex', 'ey', 'ez', 'hx', 'hy', 'hz'))
        common.check_type('pt0', pt0, (list, tuple), int)
        common.check_type('pt1', pt1, (list, tuple), int)
        common.check_type('tfunc', tfunc, types.FunctionType)
        common.check_type('spatial_value', spatial_value, \
                (np.ndarray, np.number, types.FloatType, types.IntType) )
        common.check_type('is_overwrite', is_overwrite, bool)

        # local variables
        nodef = node_fields
        dtype = nodef.dtype
        is_array = True if isinstance(spatial_value, np.ndarray) else False
        mainf_list = nodef.mainf_list
        buffer_dict = nodef.buffer_dict
        anx = nodef.accum_nx_list
        nx, ny, nz = nodef.ns

        for axis, n, p0, p1 in zip(['x', 'y', 'z'], nodef.ns, pt0, pt1):
            start, end = 0, n
            if buffer_dict.has_key(axis + '+'):
                end = n + 1
            if buffer_dict.has_key(axis + '-'):
                start = -1
            common.check_value('pt0 %s' % axis, p0, range(start, end))
            common.check_value('pt1 %s' % axis, p1, range(start, end))

        if is_array:
            shape = common.shape_two_points(pt0, pt1)
            assert shape == spatial_value.shape, \
                    'shape mismatch : %s, %s' % (shape, spatial_value.shape)
            assert dtype == spatial_value.dtype, \
                    'dtype mismatch : %s, %s' % (dtype, spatial_value.dtype)
        else:
            spatial_value = dtype(spatial_value)

        # global valriables
        self.str_f = str_f
        self.pt0 = pt0
        self.pt1 = pt1
        self.tfunc = tfunc
        self.spatial_value = spatial_value
        self.is_overwrite = is_overwrite

        self.is_array = is_array
        self.cpu = cpu
        if 'gpu' in [f.device_type for f in nodef.updatef_list]:
            from kemp.fdtd3d import gpu
            self.gpu = gpu

        # create IncidentDirect instance
        for i, mainf in enumerate(mainf_list):
            fields_pt0 = (anx[i], 0, 0)
            fields_pt1 = (anx[i + 1] - 1, ny - 1, nz - 1)
            overlap = common.overlap_two_regions(fields_pt0, fields_pt1, pt0,
                                                 pt1)

            if overlap != None:
                self.create_instance(mainf, fields_pt0, fields_pt1, overlap[0],
                                     overlap[1])

        # for buffer
        for direction, buffer in buffer_dict.items():
            fields_pt0 = { \
                    'x+': (anx[-1]-1, 0, 0), \
                    'y+': (0, ny-2, 0), \
                    'z+': (0, 0, nz-2), \
                    'x-': (-1, 0, 0), \
                    'y-': (0, -1, 0), \
                    'z-': (0, 0, -1) }[direction]

            fields_pt1 = { \
                    'x+': (anx[-1]+1, ny-1, nz-1), \
                    'y+': (nx-1, ny, nz-1), \
                    'z+': (nx-1, ny-1, nz), \
                    'x-': (1, ny-1, nz-1), \
                    'y-': (nx-1, 1, nz-1), \
                    'z-': (nx-1, ny-1, 1) }[direction]

            overlap = common.overlap_two_regions(fields_pt0, fields_pt1, pt0,
                                                 pt1)
            if overlap != None:
                self.create_instance(buffer, fields_pt0, fields_pt1,
                                     overlap[0], overlap[1])
示例#36
0
    def __init__(self,
                 fields,
                 str_f,
                 pt0,
                 pt1,
                 tfunc,
                 spatial_value=1.,
                 is_overwrite=False):
        """
        """

        common.check_type('fields', fields, (Fields, BufferFields))
        common.check_value('str_f', str_f,
                           ('ex', 'ey', 'ez', 'hx', 'hy', 'hz'))
        common.check_type('pt0', pt0, (list, tuple), int)
        common.check_type('pt1', pt1, (list, tuple), int)
        common.check_type('tfunc', tfunc, types.FunctionType)
        common.check_type('spatial_value', spatial_value, \
                (np.ndarray, np.number, types.FloatType, types.IntType) )
        common.check_type('is_overwrite', is_overwrite, bool)

        # local variables
        e_or_h = str_f[0]
        dtype = fields.dtype
        is_buffer = True if isinstance(fields, BufferFields) else False
        is_array = True if isinstance(spatial_value, np.ndarray) else False

        for axis, n, p0, p1 in zip(['x', 'y', 'z'], fields.ns, pt0, pt1):
            common.check_value('pt0 %s' % axis, p0, range(n))
            common.check_value('pt1 %s' % axis, p1, range(n))

        if is_array:
            shape = common.shape_two_points(pt0, pt1)
            assert shape == spatial_value.shape, \
                    'shape mismatch : %s, %s' % (shape, spatial_value.shape)
            assert dtype == spatial_value.dtype, \
                    'dtype mismatch : %s, %s' % (dtype, spatial_value.dtype)
        else:
            spatial_value = dtype(spatial_value)

        # create the SetFields instances
        is_update_dict = {}
        setf_dict = {}
        svalue_dict = {}

        if is_buffer:
            for part in ['', 'pre', 'post']:
                sl0 = common.slices_two_points(pt0, pt1)
                sl1 = common_buffer.slice_dict[e_or_h][part]
                overlap = common.overlap_two_slices(fields.ns, sl0, sl1)

                if overlap == None:
                    setf_dict[part] = None
                else:
                    opt0, opt1 = common.two_points_slices(fields.ns, overlap)
                    setf_dict[part] = SetFields(fields, str_f, opt0, opt1,
                                                is_array, is_overwrite)
                    svalue_dict[part] = self.overlap_svalue(
                        pt0, pt1, opt0, opt1, spatial_value, is_array)

        else:
            setf_dict[''] = SetFields(fields, str_f, pt0, pt1, is_array,
                                      is_overwrite)
            svalue_dict[''] = spatial_value

        # global variables
        self.mainf = fields
        self.tfunc = tfunc
        self.setf_dict = setf_dict
        self.svalue_dict = svalue_dict

        self.e_or_h = e_or_h
        self.tstep = 1

        # append to the update list
        self.priority_type = 'incident'
        fields.append_instance(self)
示例#37
0
    def __init__(self, fields, str_f, pt0, pt1, is_array=False, is_overwrite=True):
        """
        """

        common.check_type('fields', fields, Fields)
        common.check_type('str_f', str_f, (str, list, tuple), str)
        common.check_type('pt0', pt0, (list, tuple), (int, float))
        common.check_type('pt1', pt1, (list, tuple), (int, float))
        common.check_type('is_array', is_array, bool)
        common.check_type('is_overwrite', is_overwrite, bool)

        pt0 = list( common.convert_indices(fields.ns, pt0) )
        pt1 = list( common.convert_indices(fields.ns, pt1) )

        # local variables
        str_fs = common.convert_to_tuple(str_f)
        dtype_str_list = fields.dtype_str_list
        overwrite_str = {True: '=', False: '+='}[is_overwrite]

        for strf in str_fs:
            strf_list = ['ex', 'ey', 'ez', 'hx', 'hy', 'hz']
            common.check_value('str_f', strf, strf_list)

        for axis, n, p0, p1 in zip(['x', 'y', 'z'], fields.ns, pt0, pt1):
            common.check_value('pt0 %s' % axis, p0, range(n))
            common.check_value('pt1 %s' % axis, p1, range(n))

		# program
        macros = ['NMAX', 'XID', 'YID', 'ZID', \
                'ARGS', \
                'TARGET', 'SOURCE', 'OVERWRITE', \
                'DTYPE']

        if is_array:
            values = common_gpu.macro_replace_list(pt0, pt1) + \
                    ['DTYPE *source', \
                    'target[idx]', 'source[sub_idx]', overwrite_str] + \
                    dtype_str_list
        else:
            values = common_gpu.macro_replace_list(pt0, pt1) + \
                    ['DTYPE source', \
                    'target[idx]', 'source', overwrite_str] + \
                    dtype_str_list

        ksrc = common.replace_template_code( \
                open(common_gpu.src_path + 'copy.cu').read(), macros, values)
        program = SourceModule(ksrc)
        kernel_copy = program.get_function('copy')

		# allocation
        target_bufs = [fields.get_buf(str_f) for str_f in str_fs]
        shape = common.shape_two_points(pt0, pt1, len(str_fs))

        if is_array:
            tmp_array = np.zeros(shape, fields.dtype)
            source_buf = cuda.to_device(tmp_array)

        # global variabels and functions
        self.mainf = fields
        self.kernel_copy = kernel_copy
        self.target_bufs = target_bufs
        self.shape = shape

        if is_array:
            self.source_buf = source_buf
            self.set_fields = self.set_fields_spatial_value
        else:
            self.set_fields = self.set_fields_single_value
示例#38
0
    def set_savefields(self, str_f, pt0, pt1, tstep_range, dir_path, tag=0):
        common.check_type('str_f', str_f, (str, list, tuple), str)
        common.check_type('pt0', pt0, (list, tuple), (int, float))
        common.check_type('pt1', pt1, (list, tuple), (int, float))
        common.check_type('tstep_range', tstep_range, (list, tuple), int)
        common.check_type('dir_path', dir_path, str)
        common.check_type('tag', tag, int)

        pt0 = common.convert_indices(self.ns, pt0)
        pt1 = common.convert_indices(self.ns, pt1)
        t0 = common.convert_index(self.max_tstep, tstep_range[0])
        t1 = common.convert_index(self.max_tstep, tstep_range[1]) + 1
        tgap = tstep_range[2]
        tmax = self.max_tstep

        tag = tag if tag not in self.savef_tag_list else max(
            self.savef_tag_list) + 1
        self.savef_tag_list.append(tag)

        if is_mpi:
            overlap = common.overlap_two_regions(self.node_pt0, self.node_pt1,
                                                 pt0, pt1)
            if overlap != None:
                sx0, sy0, sz0 = self.node_pt0
                ox0, oy0, oz0 = overlap[0]
                ox1, oy1, oz1 = overlap[1]

                local_pt0 = (ox0 - sx0, oy0 - sy0, oz0 - sz0)
                local_pt1 = (ox1 - sx0, oy1 - sy0, oz1 - sz0)

                savef = node.SaveFields(self.nodef, str_f, local_pt0,
                                        local_pt1, dir_path, tag, tmax, True,
                                        rank)
                self.savef_list.append(savef)
        else:
            savef = node.SaveFields(self.nodef, str_f, pt0, pt1, dir_path, tag,
                                    tmax)
            self.savef_list.append(savef)

        # save the subdomain informations as pickle
        if self.is_master:
            if is_mpi:
                divide_info_dict = common_mpi.divide_info_dict(
                    size, self.mpi_shape, pt0, pt1, self.asn_dict)
            else:
                divide_info_dict = { \
                        'shape': common.shape_two_points(pt0, pt1), \
                        'pt0': pt0, \
                        'pt1': pt1, \
                        'anx_list': self.nodef.accum_nx_list }

            divide_info_dict['str_fs'] = common.convert_to_tuple(str_f)
            divide_info_dict['tmax'] = tmax
            divide_info_dict['tgap'] = tgap
            pkl_file = open(dir_path + 'divide_info.pkl', 'wb')
            pickle.dump(divide_info_dict, pkl_file)
            pkl_file.close()

        self.t0 = t0
        self.t1 = t1
        self.tgap = tgap
    def __init__(self, fields, str_f, pt0, pt1):
        """
        """

        common.check_type('fields', fields, Fields)
        common.check_type('str_f', str_f, (str, list, tuple), str)
        common.check_type('pt0', pt0, (list, tuple), int)
        common.check_type('pt1', pt1, (list, tuple), int)

        # local variables
        nodef = fields
        str_fs = common.convert_to_tuple(str_f)
        mainf_list = nodef.mainf_list
        anx = nodef.accum_nx_list

        for strf in str_fs:
            strf_list = ['ex', 'ey', 'ez', 'hx', 'hy', 'hz']
            common.check_value('str_f', strf, strf_list)

        for axis, n, p0, p1 in zip(['x', 'y', 'z'], nodef.ns, pt0, pt1):
            common.check_value('pt0 %s' % axis, p0, range(n))
            common.check_value('pt1 %s' % axis, p1, range(n))

        # allocation
        shape = common.shape_two_points(pt0, pt1, len(str_fs))
        dummied_shape = common.shape_two_points(pt0, pt1, is_dummy=True)
        host_array = np.zeros(shape, dtype=nodef.dtype)

        split_host_array = np.split(host_array, len(str_fs))
        split_host_array_dict = dict(zip(str_fs, split_host_array))

        getf_list = []
        slices_list = []
        self.gpu, self.cpu = gpu, cpu
        for i, mainf in enumerate(mainf_list):
            nx0 = anx[i]
            nx1 = anx[i + 1] - 1 if i < len(mainf_list) - 1 else anx[i + 1]
            overlap = common.intersection_two_lines((nx0, nx1),
                                                    (pt0[0], pt1[0]))

            if overlap != None:
                x0, y0, z0 = pt0
                x1, y1, z1 = pt1

                slice_pt0 = (overlap[0] - x0, 0, 0)
                slice_pt1 = (overlap[1] - x0, y1 - y0, z1 - z0)
                slices = []
                for j, p0, p1 in zip([0, 1, 2], slice_pt0, slice_pt1):
                    if dummied_shape[j] != 1:
                        slices.append(slice(p0, p1 + 1))
                slices_list.append(slices if slices != [] else [slice(0, 1)])

                local_pt0 = (overlap[0] - nx0, y0, z0)
                local_pt1 = (overlap[1] - nx0, y1, z1)
                getf_list.append( getattr(self, mainf.device_type). \
                        GetFields(mainf, str_fs, local_pt0, local_pt1) )

        # global variables
        self.str_fs = str_fs
        self.host_array = host_array
        self.split_host_array_dict = split_host_array_dict
        self.getf_list = getf_list
        self.slices_list = slices_list
示例#40
0
    def __init__(self, fields, str_f, pt0, pt1, tfunc, spatial_value=1., is_overwrite=False):
        """
        """
        
        common.check_type('fields', fields, Fields)
        common.check_value('str_f', str_f, ('ex', 'ey', 'ez', 'hx', 'hy', 'hz'))
        common.check_type('pt0', pt0, (list, tuple), int)
        common.check_type('pt1', pt1, (list, tuple), int)
        common.check_type('tfunc', tfunc, types.FunctionType)
        common.check_type('spatial_value', spatial_value, \
                (np.ndarray, np.number, types.FloatType, types.IntType) )
        common.check_type('is_overwrite', is_overwrite, bool)

        # local variables
        e_or_h = str_f[0]
        dtype = fields.dtype
        is_array = True if isinstance(spatial_value, np.ndarray) else False

        for axis, n, p0, p1 in zip(['x', 'y', 'z'], fields.ns, pt0, pt1):
            common.check_value('pt0 %s' % axis, p0, range(n))
            common.check_value('pt1 %s' % axis, p1, range(n))

        if is_array:
            shape = common.shape_two_points(pt0, pt1)
            assert shape == spatial_value.shape, \
                    'shape mismatch : %s, %s' % (shape, spatial_value.shape)
            assert dtype == spatial_value.dtype, \
                    'dtype mismatch : %s, %s' % (dtype, spatial_value.dtype)
        else:
            spatial_value = dtype(spatial_value)

        # create the SetFields instance
        func_dict = {}

        pts_dict = fields.split_points_dict(e_or_h, pt0, pt1)
        for part, pts in pts_dict.items():
            if pts == None:
                func_dict[part] = lambda a='': None
            else:
                func_dict[part] = SetFields(fields, str_f, \
                    pts[0], pts[1], is_array, is_overwrite).set_fields

        if is_array:
            spatial_array_dict = {}

            for part, pts in pts_dict.items():
                if pts == None:
                    spatial_array_dict[part] = 0

                else:
                    slices0 = [slice(p0, p1+1) for p0, p1 in zip(pt0, pt1)]
                    slices1 = [slice(p0, p1+1) for p0, p1 in zip(pts[0], pts[1])]
                    overlap_slices = common.intersection_two_slices(fields.ns, slices0, slices1)

                    shift_slices = []
                    for sl, p0 in zip(overlap_slices, pt0):
                        s0, s1 = sl.start, sl.stop
                        shift_slices.append( slice(s0-p0, s1-p0) )

                    dummied_shape = common.shape_two_points(pt0, pt1, is_dummy=True)
                    reshaped_value = spatial_value.reshape(dummied_shape)
                    dummied_array = reshaped_value[shift_slices]

                    overlap_shape = common.shape_two_points(pts[0], pts[1])
                    spatial_array_dict[part] = dummied_array.reshape(overlap_shape)
                    
        # global variables and functions
        self.mainf = fields
        self.dtype = dtype
        self.tfunc = tfunc
        self.func_dict = func_dict
        self.e_or_h = e_or_h
        self.tstep = 1
        
        if is_array:
            self.spatial_array_dict = spatial_array_dict
            self.update = self.update_spatial_value
        else:
            self.spatial_value = spatial_value
            self.update = self.update_single_value

        # append to the update list
        self.priority_type = 'incident'
        fields.append_instance(self)
示例#41
0
    def __init__(self, node_fields, str_f, pt0, pt1, tfunc, spatial_value=1., is_overwrite=False):
        """
        """
        
        common.check_type('node_fields', node_fields, Fields)
        common.check_value('str_f', str_f, ('ex', 'ey', 'ez', 'hx', 'hy', 'hz'))
        common.check_type('pt0', pt0, (list, tuple), int)
        common.check_type('pt1', pt1, (list, tuple), int)
        common.check_type('tfunc', tfunc, types.FunctionType)
        common.check_type('spatial_value', spatial_value, \
                (np.ndarray, np.number, types.FloatType, types.IntType) )
        common.check_type('is_overwrite', is_overwrite, bool)

        # local variables
        nodef = node_fields
        dtype = nodef.dtype
        is_array = True if isinstance(spatial_value, np.ndarray) else False
        mainf_list = nodef.mainf_list
        buffer_dict = nodef.buffer_dict
        anx = nodef.accum_nx_list
        nx, ny, nz = nodef.ns

        for axis, n, p0, p1 in zip(['x', 'y', 'z'], nodef.ns, pt0, pt1):
            start, end = 0, n
            if buffer_dict.has_key(axis+'+'):
                end = n + 1
            if buffer_dict.has_key(axis+'-'):
                start = -1
            common.check_value('pt0 %s' % axis, p0, range(start, end))
            common.check_value('pt1 %s' % axis, p1, range(start, end))

        if is_array:
            shape = common.shape_two_points(pt0, pt1)
            assert shape == spatial_value.shape, \
                    'shape mismatch : %s, %s' % (shape, spatial_value.shape)
            assert dtype == spatial_value.dtype, \
                    'dtype mismatch : %s, %s' % (dtype, spatial_value.dtype)
        else:
            spatial_value = dtype(spatial_value)

        # global valriables
        self.str_f = str_f
        self.pt0 = pt0
        self.pt1 = pt1
        self.tfunc= tfunc
        self.spatial_value = spatial_value
        self.is_overwrite = is_overwrite

        self.is_array = is_array
        self.cpu = cpu
        if 'gpu' in [f.device_type for f in nodef.updatef_list]:
            from kemp.fdtd3d import gpu
            self.gpu = gpu

        # create IncidentDirect instance
        for i, mainf in enumerate(mainf_list):
            fields_pt0 = (anx[i], 0, 0)
            fields_pt1 = (anx[i+1]-1, ny-1, nz-1)
            overlap = common.overlap_two_regions(fields_pt0, fields_pt1, pt0, pt1)

            if overlap != None:
                self.create_instance(mainf, fields_pt0, fields_pt1, overlap[0], overlap[1])


        # for buffer
        for direction, buffer in buffer_dict.items():
            fields_pt0 = { \
                    'x+': (anx[-1]-1, 0, 0), \
                    'y+': (0, ny-2, 0), \
                    'z+': (0, 0, nz-2), \
                    'x-': (-1, 0, 0), \
                    'y-': (0, -1, 0), \
                    'z-': (0, 0, -1) }[direction]

            fields_pt1 = { \
                    'x+': (anx[-1]+1, ny-1, nz-1), \
                    'y+': (nx-1, ny, nz-1), \
                    'z+': (nx-1, ny-1, nz), \
                    'x-': (1, ny-1, nz-1), \
                    'y-': (nx-1, 1, nz-1), \
                    'z-': (nx-1, ny-1, 1) }[direction]

            overlap = common.overlap_two_regions(fields_pt0, fields_pt1, pt0, pt1)
            if overlap != None:
                self.create_instance(buffer, fields_pt0, fields_pt1, overlap[0], overlap[1])
    def __init__(self,
                 fields,
                 str_f,
                 pt0,
                 pt1,
                 is_array=False,
                 is_overwrite=True):
        """
        """

        common.check_type('fields', fields, Fields)
        common.check_type('str_f', str_f, (str, list, tuple), str)
        common.check_type('pt0', pt0, (list, tuple), int)
        common.check_type('pt1', pt1, (list, tuple), int)
        common.check_type('is_array', is_array, bool)
        common.check_type('is_overwrite', is_overwrite, bool)

        # local variables
        nodef = fields
        str_fs = common.convert_to_tuple(str_f)
        mainf_list = nodef.mainf_list
        anx = nodef.accum_nx_list

        for strf in str_fs:
            strf_list = ['ex', 'ey', 'ez', 'hx', 'hy', 'hz']
            common.check_value('str_f', strf, strf_list)

        for axis, n, p0, p1 in zip(['x', 'y', 'z'], nodef.ns, pt0, pt1):
            common.check_value('pt0 %s' % axis, p0, range(n))
            common.check_value('pt1 %s' % axis, p1, range(n))

        # allocation
        dummied_shape = common.shape_two_points(pt0, pt1, is_dummy=True)

        setf_list = []
        slices_list = []
        self.gpu, self.cpu = gpu, cpu
        for i, mainf in enumerate(mainf_list):
            nx0 = anx[i]
            nx1 = anx[i + 1]
            overlap = common.intersection_two_lines((nx0, nx1),
                                                    (pt0[0], pt1[0]))

            if overlap != None:
                x0, y0, z0 = pt0
                x1, y1, z1 = pt1

                slice_pt0 = (overlap[0] - x0, 0, 0)
                slice_pt1 = (overlap[1] - x0, y1 - y0, z1 - z0)
                slices = []
                for j, p0, p1 in zip([0, 1, 2], slice_pt0, slice_pt1):
                    if dummied_shape[j] != 1:
                        slices.append(slice(p0, p1 + 1))
                slices_list.append(slices if slices != [] else [slice(0, 1)])

                local_pt0 = (overlap[0] - nx0, y0, z0)
                local_pt1 = (overlap[1] - nx0, y1, z1)
                setf_list.append( getattr(self, mainf.device_type). \
                        SetFields(mainf, str_fs, local_pt0, local_pt1, \
                        is_array, is_overwrite) )

        # global variables and functions
        self.str_fs = str_fs
        self.dtype = nodef.dtype
        self.shape = common.shape_two_points(pt0, pt1, len(str_fs))
        self.setf_list = setf_list
        self.slices_list = slices_list

        if is_array:
            self.set_fields = self.set_fields_spatial_value
        else:
            self.set_fields = self.set_fields_single_value
示例#43
0
    def __init__(self,
                 node_fields,
                 str_f,
                 pt0,
                 pt1,
                 tfunc,
                 spatial_value=1.,
                 is_overwrite=False):
        """
        """

        common.check_type('node_fields', node_fields, NodeFields)
        common.check_value('str_f', str_f,
                           ('ex', 'ey', 'ez', 'hx', 'hy', 'hz'))
        common.check_type('pt0', pt0, (list, tuple), int)
        common.check_type('pt1', pt1, (list, tuple), int)
        common.check_type('tfunc', tfunc, types.FunctionType)
        common.check_type('spatial_value', spatial_value, \
                (np.ndarray, np.number, types.FloatType, types.IntType) )
        common.check_type('is_overwrite', is_overwrite, bool)

        # local variables
        nodef = node_fields
        dtype = nodef.dtype
        is_array = True if isinstance(spatial_value, np.ndarray) else False
        mainf_list = nodef.mainf_list
        anx = nodef.accum_nx_list

        for axis, n, p0, p1 in zip(['x', 'y', 'z'], nodef.ns, pt0, pt1):
            common.check_value('pt0 %s' % axis, p0, range(n))
            common.check_value('pt1 %s' % axis, p1, range(n))

        if is_array:
            shape = common.shape_two_points(pt0, pt1)
            assert shape == spatial_value.shape, \
                    'shape mismatch : %s, %s' % (shape, spatial_value.shape)
            assert dtype == spatial_value.dtype, \
                    'dtype mismatch : %s, %s' % (dtype, spatial_value.dtype)
        else:
            spatial_value = dtype(spatial_value)

        # allocation
        dummied_shape = common.shape_two_points(pt0, pt1, is_dummy=True)

        incident_list = []
        reduced_slices = []
        self.gpu, self.cpu = gpu, cpu
        for i, mainf in enumerate(mainf_list):
            nx0 = anx[i]
            nx1 = anx[i + 1]
            overlap = common.intersection_two_lines((nx0, nx1),
                                                    (pt0[0], pt1[0]))

            if overlap != None:
                x0, y0, z0 = pt0
                x1, y1, z1 = pt1

                shift_pt0 = (overlap[0] - x0, y0 - y0, z0 - z0)
                shift_pt1 = (overlap[1] - x0, y1 - y0, z1 - z0)
                shift_slices = [
                    slice(p0, p1 + 1) for p0, p1 in zip(shift_pt0, shift_pt1)
                ]
                if is_array:
                    reshaped_value = spatial_value.reshape(dummied_shape)
                    dummied_array = reshaped_value[shift_slices]
                    overlap_shape = common.shape_two_points(
                        shift_pt0, shift_pt1)
                    split_value = dummied_array.reshape(overlap_shape).copy()
                else:
                    split_value = spatial_value

                local_pt0 = (overlap[0] - nx0, y0, z0)
                local_pt1 = (overlap[1] - nx0, y1, z1)
                incident_list.append( \
                        getattr(self, mainf.device_type). \
                        DirectIncident(mainf, str_f, local_pt0, local_pt1, \
                        tfunc, split_value, is_overwrite) )

        # global variables
        self.incident_list = incident_list
示例#44
0
    def __init__(self, fields, str_f, pt0, pt1, tfunc, spatial_value=1., is_overwrite=False):
        """
        """
        
        common.check_type('fields', fields, Fields)
        common.check_value('str_f', str_f, ('ex', 'ey', 'ez', 'hx', 'hy', 'hz'))
        common.check_type('pt0', pt0, (list, tuple), (int, float))
        common.check_type('pt1', pt1, (list, tuple), (int, float))
        common.check_type('tfunc', tfunc, types.FunctionType)
        common.check_type('spatial_value', spatial_value, \
                (np.ndarray, np.number, types.FloatType, types.IntType) )
        common.check_type('is_overwrite', is_overwrite, bool)

        pt0 = list( common.convert_indices(fields.ns, pt0) )
        pt1 = list( common.convert_indices(fields.ns, pt1) )

        # local variables
        e_or_h = str_f[0]
        dtype = fields.dtype
        is_buffer = True if isinstance(fields, BufferFields) else False
        is_array = True if isinstance(spatial_value, np.ndarray) else False

        for axis, n, p0, p1 in zip(['x', 'y', 'z'], fields.ns, pt0, pt1):
            common.check_value('pt0 %s' % axis, p0, range(n))
            common.check_value('pt1 %s' % axis, p1, range(n))

        if is_array:
            shape = common.shape_two_points(pt0, pt1)
            assert shape == spatial_value.shape, \
                    'shape mismatch : %s, %s' % (shape, spatial_value.shape)
            assert dtype == spatial_value.dtype, \
                    'dtype mismatch : %s, %s' % (dtype, spatial_value.dtype)
        else:
            spatial_value = dtype(spatial_value)

        # create the SetFields instances
        is_update_dict = {}
        setf_dict = {}
        svalue_dict = {}

        if is_buffer:
            for part in ['', 'pre', 'post']:
                sl0 = common.slices_two_points(pt0, pt1)
                sl1 = common_buffer.slice_dict[e_or_h][part]
                overlap = common.overlap_two_slices(fields.ns, sl0, sl1)

                if overlap == None:
                    setf_dict[part] = None
                else:
                    opt0, opt1 = common.two_points_slices(fields.ns, overlap)
                    setf_dict[part] = SetFields(fields, str_f, opt0, opt1, is_array, is_overwrite)
                    svalue_dict[part] = self.overlap_svalue(pt0, pt1, opt0, opt1, spatial_value, is_array)

        else:
            setf_dict[''] = SetFields(fields, str_f, pt0, pt1, is_array, is_overwrite)
            svalue_dict[''] = spatial_value

        # global variables
        self.mainf = fields
        self.tfunc = tfunc
        self.setf_dict = setf_dict
        self.svalue_dict = svalue_dict

        self.e_or_h = e_or_h
        self.tstep = 1

        # append to the update list
        self.priority_type = 'incident'
        fields.append_instance(self)
示例#45
0
    def __init__(self, fields, str_f, pt0, pt1, is_array=False, is_overwrite=True):
        """
        """

        common.check_type('fields', fields, Fields)
        common.check_type('str_f', str_f, (str, list, tuple), str)
        common.check_type('pt0', pt0, (list, tuple), (int, float))
        common.check_type('pt1', pt1, (list, tuple), (int, float))
        common.check_type('is_array', is_array, bool)
        common.check_type('is_overwrite', is_overwrite, bool)

        pt0 = list( common.convert_indices(fields.ns, pt0) )
        pt1 = list( common.convert_indices(fields.ns, pt1) )

        # local variables
        str_fs = common.convert_to_tuple(str_f)
        dtype_str_list = fields.dtype_str_list
        overwrite_str = {True: '=', False: '+='}[is_overwrite]

        for strf in str_fs:
            strf_list = ['ex', 'ey', 'ez', 'hx', 'hy', 'hz']
            common.check_value('str_f', strf, strf_list)

        for axis, n, p0, p1 in zip(['x', 'y', 'z'], fields.ns, pt0, pt1):
            common.check_value('pt0 %s' % axis, p0, range(n))
            common.check_value('pt1 %s' % axis, p1, range(n))

		# program
        macros = ['NMAX', 'XID', 'YID', 'ZID', \
                'ARGS', \
                'TARGET', 'SOURCE', 'OVERWRITE', \
                'DTYPE', 'PRAGMA_fp64']

        nmax_str, xid_str, yid_str, zid_str = common_gpu.macro_replace_list(pt0, pt1)
        if is_array:
            values = [nmax_str, xid_str, yid_str, zid_str, \
                    '__global DTYPE *source', \
                    'target[idx]', 'source[sub_idx]', overwrite_str] + \
                    dtype_str_list
        else:
            values = [nmax_str, xid_str, yid_str, zid_str, \
                    'DTYPE source', \
                    'target[idx]', 'source', overwrite_str] + \
                    dtype_str_list

        ksrc = common.replace_template_code( \
                open(common_gpu.src_path + 'copy.cl').read(), macros, values)
        program = cl.Program(fields.context, ksrc).build()

		# allocation
        target_bufs = [fields.get_buf(str_f) for str_f in str_fs]
        shape = common.shape_two_points(pt0, pt1, len(str_fs))

        if is_array:
            tmp_array = np.zeros(shape, dtype=fields.dtype) 
            source_buf = cl.Buffer( \
                    fields.context, \
                    cl.mem_flags.READ_WRITE | cl.mem_flags.COPY_HOST_PTR, \
                    hostbuf=tmp_array)

        # global variabels and functions
        self.mainf = fields
        self.program = program
        self.target_bufs = target_bufs
        self.shape = shape

        nmax = int(nmax_str)
        remainder = nmax % fields.ls
        self.gs = nmax if remainder == 0 else nmax - remainder + fields.ls 

        if is_array:
            self.source_buf = source_buf
            self.set_fields = self.set_fields_spatial_value
        else:
            self.set_fields = self.set_fields_single_value
示例#46
0
    def __init__(self, fields, str_f, pt0, pt1, is_array=False, is_overwrite=True):
        """
        """

        common.check_type('fields', fields, Fields)
        common.check_type('str_f', str_f, (str, list, tuple), str)
        common.check_type('pt0', pt0, (list, tuple), int)
        common.check_type('pt1', pt1, (list, tuple), int)
        common.check_type('is_array', is_array, bool)
        common.check_type('is_overwrite', is_overwrite, bool)

        # local variables
        nodef = fields
        str_fs = common.convert_to_tuple(str_f)
        mainf_list = nodef.mainf_list
        anx = nodef.accum_nx_list

        for strf in str_fs:
            strf_list = ['ex', 'ey', 'ez', 'hx', 'hy', 'hz']
            common.check_value('str_f', strf, strf_list)

        for axis, n, p0, p1 in zip(['x', 'y', 'z'], nodef.ns, pt0, pt1):
            common.check_value('pt0 %s' % axis, p0, range(n))
            common.check_value('pt1 %s' % axis, p1, range(n))

        # allocation
        dummied_shape = common.shape_two_points(pt0, pt1, is_dummy=True)

        setf_list = []
        slices_list = []
        self.gpu, self.cpu = gpu, cpu
        for i, mainf in enumerate(mainf_list):
            nx0 = anx[i]
            nx1 = anx[i+1]
            overlap = common.intersection_two_lines((nx0, nx1), (pt0[0], pt1[0]))

            if overlap != None:
                x0, y0, z0 = pt0
                x1, y1, z1 = pt1

                slice_pt0 = (overlap[0]-x0, 0, 0)
                slice_pt1 = (overlap[1]-x0, y1-y0, z1-z0)
                slices = []
                for j, p0, p1 in zip([0, 1, 2], slice_pt0, slice_pt1):
                    if dummied_shape[j] != 1:
                        slices.append( slice(p0, p1+1) ) 
                slices_list.append(slices if slices!=[] else [slice(0, 1)] )

                local_pt0 = (overlap[0]-nx0, y0, z0)
                local_pt1 = (overlap[1]-nx0, y1, z1)
                setf_list.append( getattr(self, mainf.device_type). \
                        SetFields(mainf, str_fs, local_pt0, local_pt1, \
                        is_array, is_overwrite) )

        # global variables and functions
        self.str_fs = str_fs
        self.dtype = nodef.dtype
        self.shape = common.shape_two_points(pt0, pt1, len(str_fs))
        self.setf_list = setf_list
        self.slices_list = slices_list

        if is_array:
            self.set_fields = self.set_fields_spatial_value
        else:
            self.set_fields = self.set_fields_single_value
示例#47
0
    def __init__(self, fields, str_f, pt0, pt1):
        """
        """

        common.check_type('fields', fields, Fields)
        common.check_type('str_f', str_f, (str, list, tuple), str)
        common.check_type('pt0', pt0, (list, tuple), int)
        common.check_type('pt1', pt1, (list, tuple), int)

        # local variables
        nodef = fields
        str_fs = common.convert_to_tuple(str_f)
        mainf_list = nodef.mainf_list
        anx = nodef.accum_nx_list

        for strf in str_fs:
            strf_list = ['ex', 'ey', 'ez', 'hx', 'hy', 'hz']
            common.check_value('str_f', strf, strf_list)

        for axis, n, p0, p1 in zip(['x', 'y', 'z'], nodef.ns, pt0, pt1):
            common.check_value('pt0 %s' % axis, p0, range(n))
            common.check_value('pt1 %s' % axis, p1, range(n))

        # allocation
        shape = common.shape_two_points(pt0, pt1, len(str_fs))
        dummied_shape = common.shape_two_points(pt0, pt1, is_dummy=True)
        host_array = np.zeros(shape, dtype=nodef.dtype)

        split_host_array = np.split(host_array, len(str_fs))
        split_host_array_dict = dict( zip(str_fs, split_host_array) ) 

        getf_list = []
        slices_list = []
        self.gpu, self.cpu = gpu, cpu
        for i, mainf in enumerate(mainf_list):
            nx0 = anx[i]
            nx1 = anx[i+1]-1 if i < len(mainf_list)-1 else anx[i+1]
            overlap = common.intersection_two_lines((nx0, nx1), (pt0[0], pt1[0]))

            if overlap != None:
                x0, y0, z0 = pt0
                x1, y1, z1 = pt1

                slice_pt0 = (overlap[0]-x0, 0, 0)
                slice_pt1 = (overlap[1]-x0, y1-y0, z1-z0)
                slices = []
                for j, p0, p1 in zip([0, 1, 2], slice_pt0, slice_pt1):
                    if dummied_shape[j] != 1:
                        slices.append( slice(p0, p1+1) ) 
                slices_list.append(slices if slices!=[] else [slice(0, 1)] )

                local_pt0 = (overlap[0]-nx0, y0, z0)
                local_pt1 = (overlap[1]-nx0, y1, z1)
                getf_list.append( getattr(self, mainf.device_type). \
                        GetFields(mainf, str_fs, local_pt0, local_pt1) )

        # global variables
        self.str_fs = str_fs
        self.host_array = host_array
        self.split_host_array_dict = split_host_array_dict
        self.getf_list = getf_list
        self.slices_list = slices_list
示例#48
0
    def __init__(self, node_fields, str_f, pt0, pt1, tfunc, spatial_value=1., is_overwrite=False):
        """
        """
        
        common.check_type('node_fields', node_fields, NodeFields)
        common.check_value('str_f', str_f, ('ex', 'ey', 'ez', 'hx', 'hy', 'hz'))
        common.check_type('pt0', pt0, (list, tuple), int)
        common.check_type('pt1', pt1, (list, tuple), int)
        common.check_type('tfunc', tfunc, types.FunctionType)
        common.check_type('spatial_value', spatial_value, \
                (np.ndarray, np.number, types.FloatType, types.IntType) )
        common.check_type('is_overwrite', is_overwrite, bool)

        # local variables
        nodef = node_fields
        dtype = nodef.dtype
        is_array = True if isinstance(spatial_value, np.ndarray) else False
        mainf_list = nodef.mainf_list
        anx = nodef.accum_nx_list

        for axis, n, p0, p1 in zip(['x', 'y', 'z'], nodef.ns, pt0, pt1):
            common.check_value('pt0 %s' % axis, p0, range(n))
            common.check_value('pt1 %s' % axis, p1, range(n))

        if is_array:
            shape = common.shape_two_points(pt0, pt1)
            assert shape == spatial_value.shape, \
                    'shape mismatch : %s, %s' % (shape, spatial_value.shape)
            assert dtype == spatial_value.dtype, \
                    'dtype mismatch : %s, %s' % (dtype, spatial_value.dtype)
        else:
            spatial_value = dtype(spatial_value)

        # allocation
        dummied_shape = common.shape_two_points(pt0, pt1, is_dummy=True)

        incident_list = []
        reduced_slices = []
        self.gpu, self.cpu = gpu, cpu
        for i, mainf in enumerate(mainf_list):
            nx0 = anx[i]
            nx1 = anx[i+1]
            overlap = common.intersection_two_lines((nx0, nx1), (pt0[0], pt1[0]))

            if overlap != None:
                x0, y0, z0 = pt0
                x1, y1, z1 = pt1

                shift_pt0 = (overlap[0]-x0, y0-y0, z0-z0)
                shift_pt1 = (overlap[1]-x0, y1-y0, z1-z0)
                shift_slices = [slice(p0, p1+1) for p0, p1 in zip(shift_pt0, shift_pt1)]
                if is_array:
                    reshaped_value = spatial_value.reshape(dummied_shape)
                    dummied_array = reshaped_value[shift_slices]
                    overlap_shape = common.shape_two_points(shift_pt0, shift_pt1)
                    split_value = dummied_array.reshape(overlap_shape).copy()
                else:
                    split_value = spatial_value

                local_pt0 = (overlap[0]-nx0, y0, z0)
                local_pt1 = (overlap[1]-nx0, y1, z1)
                incident_list.append( \
                        getattr(self, mainf.device_type). \
                        DirectIncident(mainf, str_f, local_pt0, local_pt1, \
                        tfunc, split_value, is_overwrite) )

        # global variables
        self.incident_list = incident_list
    def __init__(self,
                 fields,
                 str_f,
                 pt0,
                 pt1,
                 is_array=False,
                 is_overwrite=True):
        """
        """

        common.check_type('fields', fields, Fields)
        common.check_type('str_f', str_f, (str, list, tuple), str)
        common.check_type('pt0', pt0, (list, tuple), (int, float))
        common.check_type('pt1', pt1, (list, tuple), (int, float))
        common.check_type('is_array', is_array, bool)
        common.check_type('is_overwrite', is_overwrite, bool)

        pt0 = list(common.convert_indices(fields.ns, pt0))
        pt1 = list(common.convert_indices(fields.ns, pt1))

        # local variables
        str_fs = common.convert_to_tuple(str_f)
        dtype_str_list = fields.dtype_str_list
        overwrite_str = {True: '=', False: '+='}[is_overwrite]

        for strf in str_fs:
            strf_list = ['ex', 'ey', 'ez', 'hx', 'hy', 'hz']
            common.check_value('str_f', strf, strf_list)

        for axis, n, p0, p1 in zip(['x', 'y', 'z'], fields.ns, pt0, pt1):
            common.check_value('pt0 %s' % axis, p0, range(n))
            common.check_value('pt1 %s' % axis, p1, range(n))

# program
        macros = ['NMAX', 'XID', 'YID', 'ZID', \
                'ARGS', \
                'TARGET', 'SOURCE', 'OVERWRITE', \
                'DTYPE']

        if is_array:
            values = common_gpu.macro_replace_list(pt0, pt1) + \
                    ['DTYPE *source', \
                    'target[idx]', 'source[sub_idx]', overwrite_str] + \
                    dtype_str_list
        else:
            values = common_gpu.macro_replace_list(pt0, pt1) + \
                    ['DTYPE source', \
                    'target[idx]', 'source', overwrite_str] + \
                    dtype_str_list

        ksrc = common.replace_template_code( \
                open(common_gpu.src_path + 'copy.cu').read(), macros, values)
        program = SourceModule(ksrc)
        kernel_copy = program.get_function('copy')

        # allocation
        target_bufs = [fields.get_buf(str_f) for str_f in str_fs]
        shape = common.shape_two_points(pt0, pt1, len(str_fs))

        if is_array:
            tmp_array = np.zeros(shape, fields.dtype)
            source_buf = cuda.to_device(tmp_array)

        # global variabels and functions
        self.mainf = fields
        self.kernel_copy = kernel_copy
        self.target_bufs = target_bufs
        self.shape = shape

        if is_array:
            self.source_buf = source_buf
            self.set_fields = self.set_fields_spatial_value
        else:
            self.set_fields = self.set_fields_single_value
示例#50
0
    def __init__(self, fields, str_f, pt0, pt1, is_array=False, is_overwrite=True):
        """
        """

        common.check_type('fields', fields, Fields)
        common.check_type('str_f', str_f, (str, list, tuple), str)
        common.check_type('pt0', pt0, (list, tuple), (int, float))
        common.check_type('pt1', pt1, (list, tuple), (int, float))
        common.check_type('is_array', is_array, bool)
        common.check_type('is_overwrite', is_overwrite, bool)

        pt0 = list( common.convert_indices(fields.ns, pt0) )
        pt1 = list( common.convert_indices(fields.ns, pt1) )

        # local variables
        str_fs = common.convert_to_tuple(str_f)
        dtype_str_list = fields.dtype_str_list
        overwrite_str = {True: '=', False: '+='}[is_overwrite]

        for strf in str_fs:
            strf_list = ['ex', 'ey', 'ez', 'hx', 'hy', 'hz']
            common.check_value('str_f', strf, strf_list)

        for axis, n, p0, p1 in zip(['x', 'y', 'z'], fields.ns, pt0, pt1):
            common.check_value('pt0 %s' % axis, p0, range(n))
            common.check_value('pt1 %s' % axis, p1, range(n))

        # program
        macros = ['NMAX', 'XID', 'YID', 'ZID', \
                  'ARGS', \
                  'TARGET', 'SOURCE', 'OVERWRITE', \
                  'DTYPE', 'PRAGMA_fp64']

        nmax_str, xid_str, yid_str, zid_str = common_gpu.macro_replace_list(pt0, pt1)
        if is_array:
            values = [nmax_str, xid_str, yid_str, zid_str, \
                      '__global DTYPE *source', \
                      'target[idx]', 'source[sub_idx]', overwrite_str] + \
                dtype_str_list
        else:
            values = [nmax_str, xid_str, yid_str, zid_str, \
                      'DTYPE source', \
                      'target[idx]', 'source', overwrite_str] + \
                dtype_str_list

        ksrc = common.replace_template_code( \
            open(common_gpu.src_path + 'copy.cl').read(), macros, values)
        program = cl.Program(fields.context, ksrc).build()

        # allocation
        target_bufs = [fields.get_buf(str_f) for str_f in str_fs]
        shape = common.shape_two_points(pt0, pt1, len(str_fs))

        if is_array:
            tmp_array = np.zeros(shape, dtype=fields.dtype)
            source_buf = cl.Buffer( \
                fields.context, \
                cl.mem_flags.READ_WRITE | cl.mem_flags.COPY_HOST_PTR, \
                hostbuf=tmp_array)

        # global variabels and functions
        self.mainf = fields
        self.program = program
        self.target_bufs = target_bufs
        self.shape = shape

        nmax = int(nmax_str)
        remainder = nmax % fields.ls
        self.gs = nmax if remainder == 0 else nmax - remainder + fields.ls 

        if is_array:
            self.source_buf = source_buf
            self.set_fields = self.set_fields_spatial_value
        else:
            self.set_fields = self.set_fields_single_value
示例#51
0
    def __init__(self,
                 fields,
                 pt0,
                 pt1,
                 ep_inf,
                 drude_freq,
                 gamma,
                 mask_arrays=(1, 1, 1)):
        common.check_type('fields', fields, Fields)
        common.check_type('pt0', pt0, (list, tuple), (int, float))
        common.check_type('pt1', pt1, (list, tuple), (int, float))
        common.check_type('ep_inf', ep_inf, (int, float))
        common.check_type('drude_freq', drude_freq, (int, float))
        common.check_type('gamma', gamma, (int, float))
        common.check_type('mask_arrays', mask_arrays, (list, tuple),
                          (np.ndarray, int))

        # local variables
        pt0 = common.convert_indices(fields.ns, pt0)
        pt1 = common.convert_indices(fields.ns, pt1)
        context = fields.context
        queue = fields.queue
        dtype = fields.dtype
        shape = common.shape_two_points(pt0, pt1, is_dummy=True)

        for axis, n, p0, p1 in zip(['x', 'y', 'z'], fields.ns, pt0, pt1):
            common.check_value('pt0 %s' % axis, p0, range(n))
            common.check_value('pt1 %s' % axis, p1, range(n))

        for mask_array in mask_arrays:
            if isinstance(mask_array, np.ndarray):
                assert common.shape_two_points(pt0, pt1) == mask_array.shape, \
                       'shape mismatch : %s, %s' % (shape, mask_array.shape)

        # allocations
        psis = [np.zeros(shape, dtype) for i in range(3)]
        psi_bufs = [
            cl.Buffer(context, cl.mem_flags.READ_WRITE, psi.nbytes)
            for psi in psis
        ]
        for psi_buf, psi in zip(psi_bufs, psis):
            cl.enqueue_copy(queue, psi_buf, psi)

        dt = fields.dt
        aa = (2 - gamma * dt) / (2 + gamma * dt)
        bb = drude_freq**2 * dt / (2 + gamma * dt)
        comm = 2 * ep_inf + bb * dt
        ca = 2 * dt / comm
        cb = -(aa + 3) * bb * dt / comm
        cc = -(aa + 1) * dt / comm
        cas = [ca * mask for mask in mask_arrays]

        shape = common.shape_two_points(pt0, pt1, is_dummy=True)
        f = np.zeros(shape, dtype)
        psi_bufs = [
            cl.Buffer(context, cl.mem_flags.READ_WRITE, f.nbytes)
            for i in range(3)
        ]
        for psi_buf in psi_bufs:
            cl.enqueue_copy(queue, psi_buf, f)

        cf = np.ones(shape, dtype)
        mask_bufs = [
            cl.Buffer(context, cl.mem_flags.READ_ONLY, cf.nbytes)
            for i in range(3)
        ]
        for mask_buf, mask in zip(mask_bufs, mask_arrays):
            cl.enqueue_copy(queue, mask_buf, cf * mask)

        # modify ce arrays
        slices = common.slices_two_points(pt0, pt1)
        for ce, ca in zip(fields.get_ces(), cas):
            ce[slices] = ca * mask + ce[slices] * mask.__invert__()

        # program
        nmax_str, xid_str, yid_str, zid_str = common_gpu.macro_replace_list(
            pt0, pt1)
        macros = ['NMAX', 'XID', 'YID', 'ZID', 'DX', 'DTYPE', 'PRAGMA_fp64']
        values = [nmax_str, xid_str, yid_str, zid_str,
                  str(fields.ls)] + fields.dtype_str_list

        ksrc = common.replace_template_code( \
            open(common_gpu.src_path + 'drude.cl').read(), macros, values)
        program = cl.Program(fields.context, ksrc).build()

        # arguments
        pca = aa
        pcb = (aa + 1) * bb
        args = fields.ns + [dtype(cb), dtype(cc), dtype(pca), dtype(pcb)] \
            + fields.eh_bufs[:3] + psi_bufs + mask_bufs

        # global variables
        self.mainf = fields
        self.program = program
        self.args = args

        nx, ny, nz = fields.ns
        nmax = int(nmax_str)
        remainder = nmax % fields.ls
        self.gs = nmax if remainder == 0 else nmax - remainder + fields.ls

        # append to the update list
        self.priority_type = 'material'
        fields.append_instance(self)