def runTest(self): ufunc, nx, ny, nz, coeff_use, precision_float, use_cpu_core, split, tmax = self.args fields = Fields(nx, ny, nz, coeff_use, precision_float, use_cpu_core) core = Core(fields) strf_list = ['ex', 'ey', 'ez', 'hx', 'hy', 'hz'] slice_xyz = [slice(None, None), slice(None, None), fields.slice_z] # allocations ns = fields.ns dtype = fields.dtype ehs = common_update.generate_random_ehs(nx, ny, nz, dtype, ufunc) fields.set_ehs(*ehs) ces, chs = common_update.generate_random_cs(coeff_use, nx, ny, nz, dtype) if 'e' in coeff_use: fields.set_ces(*ces) if 'h' in coeff_use: fields.set_chs(*chs) # update if ufunc == 'e': for tstep in xrange(0, tmax): fields.update_e() common_update.update_e(ehs, ces) fields.enqueue_barrier() for strf, eh in zip(strf_list, ehs)[:3]: norm = np.linalg.norm(eh - fields.get(strf)[slice_xyz]) max_diff = np.abs(eh - fields.get(strf)[slice_xyz]).max() self.assertEqual(norm, 0, '%s, %s, %g, %g' % (self.args, strf, norm, max_diff) ) if fields.pad != 0: if strf == 'ez': norm2 = np.linalg.norm(fields.get(strf)[:,:,-fields.pad:]) else: norm2 = np.linalg.norm(fields.get(strf)[:,:,-fields.pad-1:]) self.assertEqual(norm2, 0, '%s, %s, %g, padding' % (self.args, strf, norm2) ) elif ufunc == 'h': for tstep in xrange(0, tmax): fields.update_h() common_update.update_h(ehs, chs) fields.enqueue_barrier() for strf, eh in zip(strf_list, ehs)[3:]: norm = np.linalg.norm(eh - fields.get(strf)[slice_xyz]) max_diff = np.abs(eh - fields.get(strf)[slice_xyz]).max() self.assertEqual(norm, 0, '%s, %s, %g, %g' % \ (self.args, strf, norm, max_diff) ) if fields.pad != 0: if strf == 'hz': norm2 = np.linalg.norm(fields.get(strf)[:,:,-fields.pad:]) else: norm2 = np.linalg.norm(fields.get(strf)[:,:,-fields.pad:]) self.assertEqual(norm2, 0, '%s, %s, %g, padding' % (self.args, strf, norm2) )
def runTest(self): ufunc, nx, ny, nz, coeff_use, precision_float, use_cpu_core, split, tmax = self.args fields = Fields(nx, ny, nz, coeff_use, precision_float, use_cpu_core) core = Core(fields) strf_list = ['ex', 'ey', 'ez', 'hx', 'hy', 'hz'] slice_xyz = [slice(None, None), slice(None, None), fields.slice_z] # allocations ns = fields.ns dtype = fields.dtype ehs = common_update.generate_random_ehs(nx, ny, nz, dtype, ufunc) fields.set_ehs(*ehs) ces, chs = common_update.generate_random_cs(coeff_use, nx, ny, nz, dtype) if 'e' in coeff_use: fields.set_ces(*ces) if 'h' in coeff_use: fields.set_chs(*chs) # update if ufunc == 'e': for tstep in xrange(0, tmax): fields.update_e() common_update.update_e(ehs, ces) fields.enqueue_barrier() for strf, eh in zip(strf_list, ehs)[:3]: norm = np.linalg.norm(eh - fields.get(strf)[slice_xyz]) max_diff = np.abs(eh - fields.get(strf)[slice_xyz]).max() self.assertEqual( norm, 0, '%s, %s, %g, %g' % (self.args, strf, norm, max_diff)) if fields.pad != 0: if strf == 'ez': norm2 = np.linalg.norm( fields.get(strf)[:, :, -fields.pad:]) else: norm2 = np.linalg.norm( fields.get(strf)[:, :, -fields.pad - 1:]) self.assertEqual( norm2, 0, '%s, %s, %g, padding' % (self.args, strf, norm2)) elif ufunc == 'h': for tstep in xrange(0, tmax): fields.update_h() common_update.update_h(ehs, chs) fields.enqueue_barrier() for strf, eh in zip(strf_list, ehs)[3:]: norm = np.linalg.norm(eh - fields.get(strf)[slice_xyz]) max_diff = np.abs(eh - fields.get(strf)[slice_xyz]).max() self.assertEqual(norm, 0, '%s, %s, %g, %g' % \ (self.args, strf, norm, max_diff) ) if fields.pad != 0: if strf == 'hz': norm2 = np.linalg.norm( fields.get(strf)[:, :, -fields.pad:]) else: norm2 = np.linalg.norm( fields.get(strf)[:, :, -fields.pad:]) self.assertEqual( norm2, 0, '%s, %s, %g, padding' % (self.args, strf, norm2))
def runTest(self): ufunc, nx, ny, nz, coeff_use, precision_float, tmax = self.args gpu_devices = common_gpu.gpu_device_list(print_info=False) context = cl.Context(gpu_devices) device = gpu_devices[0] fields = Fields(context, device, nx, ny, nz, coeff_use, precision_float) core = Core(fields) # allocations ns = fields.ns dtype = fields.dtype strf_list = ["ex", "ey", "ez", "hx", "hy", "hz"] ehs = common_update.generate_random_ehs(nx, ny, nz, dtype, ufunc) fields.set_eh_bufs(*ehs) ces, chs = common_update.generate_random_cs(coeff_use, nx, ny, nz, dtype) if "e" in coeff_use: fields.set_ce_bufs(*ces) if "h" in coeff_use: fields.set_ch_bufs(*chs) tmpf = np.zeros(fields.ns_pitch, dtype=dtype) # update if ufunc == "e": for tstep in xrange(0, tmax): fields.update_e() common_update.update_e(ehs, ces) for strf, eh in zip(strf_list, ehs)[:3]: cl.enqueue_copy(fields.queue, tmpf, fields.get_buf(strf)) norm = np.linalg.norm(eh - tmpf[:, :, fields.slice_z]) max_diff = np.abs(eh - tmpf[:, :, fields.slice_z]).max() self.assertEqual(norm, 0, "%s, %s, %g, %g" % (self.args, strf, norm, max_diff)) if fields.pad != 0: if strf == "ez": norm2 = np.linalg.norm(tmpf[:, :, -fields.pad :]) else: norm2 = np.linalg.norm(tmpf[:, :, -fields.pad - 1 :]) self.assertEqual(norm2, 0, "%s, %s, %g, padding" % (self.args, strf, norm2)) elif ufunc == "h": for tstep in xrange(0, tmax): fields.update_h() common_update.update_h(ehs, chs) for strf, eh in zip(strf_list, ehs)[3:]: cl.enqueue_copy(fields.queue, tmpf, fields.get_buf(strf)) norm = np.linalg.norm(eh - tmpf[:, :, fields.slice_z]) max_diff = np.abs(eh - tmpf[:, :, fields.slice_z]).max() self.assertEqual(norm, 0, "%s, %s, %g, %g" % (self.args, strf, norm, max_diff)) if fields.pad != 0: if strf == "hz": norm2 = np.linalg.norm(tmpf[:, :, -fields.pad :]) else: norm2 = np.linalg.norm(tmpf[:, :, -fields.pad :]) self.assertEqual(norm2, 0, "%s, %s, %g, padding" % (self.args, strf, norm2))
def runTest(self): ufunc, nx, ny, nz, coeff_use, precision_float, tmax = self.args gpu_devices = common_gpu.gpu_device_list(print_info=False) context = cl.Context(gpu_devices) device = gpu_devices[0] fields = Fields(context, device, nx, ny, nz, coeff_use, precision_float) core = Core(fields) # allocations ns = fields.ns dtype = fields.dtype strf_list = ['ex', 'ey', 'ez', 'hx', 'hy', 'hz'] ehs = common_update.generate_random_ehs(nx, ny, nz, dtype, ufunc) fields.set_eh_bufs(*ehs) ces, chs = common_update.generate_random_cs(coeff_use, nx, ny, nz, dtype) if 'e' in coeff_use: fields.set_ce_bufs(*ces) if 'h' in coeff_use: fields.set_ch_bufs(*chs) tmpf = np.zeros(fields.ns_pitch, dtype=dtype) # update if ufunc == 'e': for tstep in xrange(0, tmax): fields.update_e() common_update.update_e(ehs, ces) for strf, eh in zip(strf_list, ehs)[:3]: cl.enqueue_copy(fields.queue, tmpf, fields.get_buf(strf)) norm = np.linalg.norm(eh - tmpf[:, :, fields.slice_z]) max_diff = np.abs(eh - tmpf[:, :, fields.slice_z]).max() self.assertEqual( norm, 0, '%s, %s, %g, %g' % (self.args, strf, norm, max_diff)) if fields.pad != 0: if strf == 'ez': norm2 = np.linalg.norm(tmpf[:, :, -fields.pad:]) else: norm2 = np.linalg.norm(tmpf[:, :, -fields.pad - 1:]) self.assertEqual( norm2, 0, '%s, %s, %g, padding' % (self.args, strf, norm2)) elif ufunc == 'h': for tstep in xrange(0, tmax): fields.update_h() common_update.update_h(ehs, chs) for strf, eh in zip(strf_list, ehs)[3:]: cl.enqueue_copy(fields.queue, tmpf, fields.get_buf(strf)) norm = np.linalg.norm(eh - tmpf[:, :, fields.slice_z]) max_diff = np.abs(eh - tmpf[:, :, fields.slice_z]).max() self.assertEqual( norm, 0, '%s, %s, %g, %g' % (self.args, strf, norm, max_diff)) if fields.pad != 0: if strf == 'hz': norm2 = np.linalg.norm(tmpf[:, :, -fields.pad:]) else: norm2 = np.linalg.norm(tmpf[:, :, -fields.pad:]) self.assertEqual( norm2, 0, '%s, %s, %g, padding' % (self.args, strf, norm2))