def tf_map_coordinates(input, coords, order=1): """Tensorflow verion of scipy.ndimage.map_coordinates""" assert order == 1 coords_tl = tf.cast(tf.floor(coords), 'int32') coords_br = tf.cast(tf.ceil(coords), 'int32') coords_bl = tf.stack([coords_tl[:, 0], coords_br[:, 1]], axis=1) coords_tr = tf.stack([coords_br[:, 0], coords_tl[:, 1]], axis=1) vals_tl = tf.gather_nd(input, coords_tl) vals_br = tf.gather_nd(input, coords_br) vals_bl = tf.gather_nd(input, coords_bl) vals_tr = tf.gather_nd(input, coords_tr) h_offset = coords[:, 0] - tf.cast(coords_tl[:, 0], tf.float32) h_int_t = (((1.0 - h_offset) * vals_tl) + (h_offset * vals_tr)) h_int_b = (((1.0 - h_offset) * vals_bl) + (h_offset * vals_br)) v_offset = coords[:, 1] - tf.cast(coords_tl[:, 1], tf.float32) int_vals = (((1.0 - v_offset) * h_int_t) + (v_offset * h_int_b)) return int_vals
def _find_subpixel_maxima(x, kernel_size, sigma, upsample_factor, coordinate_scale=1, confidence_scale=255.): kernel = gaussian_kernel_2d(kernel_size, sigma) kernel = tf.expand_dims(kernel, 0) x_shape = tf.shape(x) rows = x_shape[1] cols = x_shape[2] max_vals = tf.reduce_max(tf.reshape(x, [-1, rows * cols]), axis=1) max_vals = tf.reshape(max_vals, [-1, 1]) / confidence_scale row_pad = rows // 2 - kernel_size // 2 col_pad = cols // 2 - kernel_size // 2 padding = [[0, 0], [row_pad, row_pad - 1], [col_pad, col_pad - 1]] kernel = tf.pad(kernel, padding) row_center = row_pad + (kernel_size // 2) col_center = col_pad + (kernel_size // 2) center = tf.stack([row_center, col_center]) center = tf.expand_dims(center, 0) center = tf.cast(center, dtype=tf.float32) shifts = _upsampled_registration(x, kernel, upsample_factor) shifts = center - shifts shifts *= coordinate_scale maxima = tf.concat([shifts[:, ::-1], max_vals], -1) return maxima
def _get_vals_by_coords(input, coords): coords_0_flat = tf.reshape(coords[..., 0], [-1]) coords_1_flat = tf.reshape(coords[..., 1], [-1]) indices = tf.stack([idx, coords_0_flat, coords_1_flat], axis=-1) vals = tf.gather_nd(input, indices) vals = tf.reshape(vals, (batch_size, n_coords)) return vals
def degree_matrix(A, return_sparse_batch=False): """ Computes the degree matrix of A, deals with sparse A and batch mode automatically. :param A: Tensor or SparseTensor with rank k = {2, 3}. :param return_sparse_batch: if operating in batch mode, return a SparseTensor. Note that the sparse degree tensor returned by this function cannot be used for sparse matrix multiplication afterwards. :return: SparseTensor of rank k. """ D = degrees(A) batch_mode = K.ndim(D) == 2 N = tf.shape(D)[-1] batch_size = tf.shape(D)[0] if batch_mode else 1 inner_index = tf.tile(tf.stack([tf.range(N)] * 2, axis=1), (batch_size, 1)) if batch_mode: if return_sparse_batch: outer_index = tf_repeat_1d( tf.range(batch_size), tf.ones(batch_size) * tf.cast(N, tf.float32)) indices = tf.concat([outer_index[:, None], inner_index], 1) dense_shape = (batch_size, N, N) else: return tf.linalg.diag(D) else: indices = inner_index dense_shape = (N, N) indices = tf.cast(indices, tf.int64) values = tf.reshape(D, (-1, )) return tf.SparseTensor(indices, values, dense_shape)
def batch_map_coordinates(input, coords, order=1): """Batch version of tf_map_coordinates""" input_shape = tf.shape(input) batch_size = input_shape[0] input_size = input_shape[1] #coords = tf.reshape(coords, (batch_size, -1, 2)) n_coords = tf.shape(coords)[1] coords = tf.clip_by_value(coords, 0, tf.cast(input_size, 'float32') - 1) coords_tl = tf.cast(tf.floor(coords), 'int32') coords_br = tf.cast(tf.ceil(coords), 'int32') coords_bl = tf.stack([coords_tl[..., 0], coords_br[..., 1]], axis=-1) coords_tr = tf.stack([coords_br[..., 0], coords_tl[..., 1]], axis=-1) idx = tf.range(batch_size) idx = tf.expand_dims(idx, -1) idx = tf.tile(idx, [1, n_coords]) idx = tf.reshape(idx, [-1]) def _get_vals_by_coords(input, coords): coords_0_flat = tf.reshape(coords[..., 0], [-1]) coords_1_flat = tf.reshape(coords[..., 1], [-1]) indices = tf.stack([idx, coords_0_flat, coords_1_flat], axis=-1) vals = tf.gather_nd(input, indices) vals = tf.reshape(vals, (batch_size, n_coords)) return vals vals_tl = _get_vals_by_coords(input, coords_tl) vals_br = _get_vals_by_coords(input, coords_br) vals_bl = _get_vals_by_coords(input, coords_bl) vals_tr = _get_vals_by_coords(input, coords_tr) h_offset = coords[..., 0] - tf.cast(coords_tl[..., 0], tf.float32) h_int_t = (((1.0 - h_offset) * vals_tl) + (h_offset * vals_tr)) h_int_b = (((1.0 - h_offset) * vals_bl) + (h_offset * vals_br)) v_offset = coords[..., 1] - tf.cast(coords_tl[..., 1], tf.float32) int_vals = (((1.0 - v_offset) * h_int_t) + (v_offset * h_int_b)) return int_vals
def get_score(stylized_image, z_style, alpha, alpha_mean=0.5, alpha_sigma=0, weight_image=20, weight_prior=1, image_score_fun='blue', **kwargs): score_funs = {'blue': blue_score, 'mem': mem_score, 'aes': aes_score, 'scary': partial(emotion_score, emotion_type='scary'), 'gloomy': partial(emotion_score, emotion_type='gloomy'), 'peaceful': partial(emotion_score, emotion_type='peaceful'), 'happy': partial(emotion_score, emotion_type='happy')} gp = weight_prior * gaussian_prior(z_style) isf = weight_image * score_funs[image_score_fun](stylized_image, **kwargs) ap = alpha_prior(alpha, alpha_mean, alpha_sigma) return ktf.stack([gp, isf, ap])
def batch_map_offsets(input, offsets, order=1): """Batch map offsets into input Adds index of every entry to the entry to make it's interpolation relevant to it's location """ offset_shape = offsets.get_shape() batch_size = tf.shape(offsets)[0] input_h = offset_shape[1] input_w = offset_shape[2] channel_size = int(offset_shape[3].value) #offsets = tf.reshape(offsets, (batch_size, -1, 2)) #################### DEFAULT COORDINATES FOR EVERY POINT #################### ind_add = tf.meshgrid(tf.range(1, input_h + 1, delta=1), tf.range(1, input_w + 1, delta=1), indexing='ij') ind_add = tf.stack(ind_add, axis=-1) ind_add = tf.cast(ind_add, 'float32') ind_add = tf.reshape(ind_add, (1, input_h, input_w, 2)) ind_add = tf.tile(ind_add, [batch_size, 1, 1, int(channel_size / 2)]) ############################################################################# #################### KERNEL OFFSET FOR EVERY POINT #################### ind_zero = tf.meshgrid(tf.range(-1, 2, delta=1), tf.range(-1, 2, delta=1), indexing='ij') ind_zero = tf.stack(ind_zero, axis=-1) ind_zero = tf.cast(ind_zero, 'float32') ind_zero = tf.reshape(ind_zero, (1, 1, 1, channel_size)) ind_zero = tf.tile(ind_zero, [batch_size, input_h, input_w, 1]) ####################################################################### coords = offsets + ind_add + ind_zero int_vals = batch_map_coordinates(input, coords, int(channel_size / 2)) return int_vals
def batch_map_offsets(input, offsets, order=1): """Batch map offsets into input Adds index of every entry to the entry to make it's interpolation relevant to it's location """ input_shape = tf.shape(input) batch_size = input_shape[0] input_w = input_shape[1] input_h = input_shape[2] offsets = tf.reshape(offsets, (batch_size, -1, 2)) ind_add = tf.meshgrid(tf.range(input_w), tf.range(input_h), indexing='ij') ind_add = tf.stack(ind_add, axis=-1) ind_add = tf.cast(ind_add, 'float32') ind_add = tf.reshape(ind_add, (-1, 2)) ind_add = tf.expand_dims(ind_add, 0) ind_add = tf.tile(ind_add, [batch_size, 1, 1]) coords = offsets + ind_add int_vals = batch_map_coordinates(input, coords) return int_vals
def batch_map_coordinates(input, coords, n_coords): """Batch version of tf_map_coordinates""" #init_input_shape = input.get_shape() #input = tf.reshape(input, (-1, init_input_shape[3])) #coords = tf.reshape(coords, (-1, n_coords * 2)) input_shape = input.get_shape() input_h = input_shape[1].value input_w = input_shape[2].value #batch_size = input_shape[0] #input_size = input_shape[1] #coords = tf.reshape(coords, (batch_size, -1, 2)) #n_coords = tf.shape(coords)[1] coords_h = tf.clip_by_value(coords[..., :n_coords], 0, tf.cast(input_h, 'float32') - 1) coords_w = tf.clip_by_value(coords[..., n_coords:], 0, tf.cast(input_w, 'float32') - 1) coords = tf.stack([coords_h, coords_w], axis=-1) coords_tl = tf.cast(tf.floor(coords), 'float32') coords_br = tf.cast(tf.ceil(coords), 'float32') coords_bl = tf.stack([coords_tl[..., 0], coords_br[..., 1]], axis=-1) coords_tr = tf.stack([coords_br[..., 0], coords_tl[..., 1]], axis=-1) #idx = tf.range(batch_size) #idx = tf.expand_dims(idx, -1) #idx = tf.tile(idx, [1, n_coords]) #idx = tf.reshape(idx, [-1]) def _get_vals_by_coords(input, coords, n_coords): coords_shape = tf.shape(coords) input_shape = input.get_shape() input_w = input_shape[2].value input_h = input_shape[1].value channel_size = input_shape[3].value batch_size = tf.shape(input)[0] input = tf.transpose(input, (0, 3, 1, 2)) input = tf.reshape(input, (-1, channel_size, input_h * input_w)) indices = coords[..., 0] * input_w + coords[..., 1] #indices = tf.expand_dims(indices, axis=1) #indices = tf.tile(indices, [1, channel_size, 1, 1, 1]) #indices = tf.reshape(indices, (-1, channel_size, input_h * input_w * n_coords)) #indices = tf.transpose(indices, (0, 3, 1, 2)) indices = tf.reshape(indices, (-1, input_h * input_w * n_coords)) indices = tf.cast(indices, 'int32') #indices = tf.reshape(indices, [-1]) #input = tf.reshape(input, [-1]) vals = tf.gather(input, indices[0], axis=-1) #vals = tf.map_fn(lambda x: tf.gather(x[0], x[1], axis=-1), (input,indices), dtype=tf.float32) vals = tf.reshape(vals, (-1, channel_size, input_h, input_w, n_coords)) return vals vals_tl = (1 + (coords_tl[..., 0] - coords[..., 0])) * \ (1 + (coords_tl[..., 1] - coords[..., 1])) vals_br = (1 - (coords_br[..., 0] - coords[..., 0])) * \ (1 - (coords_br[..., 1] - coords[..., 1])) vals_bl = (1 + (coords_bl[..., 0] - coords[..., 0])) * \ (1 + (coords_bl[..., 1] - coords[..., 1])) vals_tr = (1 - (coords_tr[..., 0] - coords[..., 0])) * \ (1 - (coords_tr[..., 1] - coords[..., 1])) x_vals_tl = _get_vals_by_coords(input, coords_tl, n_coords) x_vals_br = _get_vals_by_coords(input, coords_br, n_coords) x_vals_bl = _get_vals_by_coords(input, coords_bl, n_coords) x_vals_tr = _get_vals_by_coords(input, coords_tr, n_coords) #h_offset = coords[..., 0] - tf.cast(coords_tl[..., 0], tf.float32) #h_int_t = (((1.0 - h_offset) * vals_tl) + (h_offset * vals_tr)) #h_int_b = (((1.0 - h_offset) * vals_bl) + (h_offset * vals_br)) #v_offset = coords[..., 1] - tf.cast(coords_tl[..., 1], tf.float32) #int_vals = (((1.0 - v_offset) * h_int_t) + (v_offset * h_int_b)) int_vals = tf.expand_dims(vals_tl, 1) * x_vals_tl + \ tf.expand_dims(vals_br, 1) * x_vals_br + \ tf.expand_dims(vals_bl, 1) * x_vals_bl + \ tf.expand_dims(vals_tr, 1) * x_vals_tr return int_vals