示例#1
0
文件: decode.py 项目: the-moliver/kfs
    def call(self, x, mask=None):
        x = K.permute_dimensions(x, (0, 2, 1))
        x = K.reshape(x, (-1, self.input_length))
        x = K.expand_dims(x, 1)
        x = K.expand_dims(x, -1)
        if self.real_filts is not None:
            conv_out_r = K.conv2d(x, self.W_r, strides=self.subsample,
                                  border_mode=self.border_mode,
                                  dim_ordering='th')
        else:
            conv_out_r = x

        if self.complex_filts is not None:
            conv_out_c1 = K.conv2d(x, self.W_c1, strides=self.subsample,
                                   border_mode=self.border_mode,
                                   dim_ordering='th')
            conv_out_c2 = K.conv2d(x, self.W_c2, strides=self.subsample,
                                   border_mode=self.border_mode,
                                   dim_ordering='th')
            conv_out_c = K.sqrt(K.square(conv_out_c1) + K.square(conv_out_c2) + K.epsilon())
            output = K.concatenate((conv_out_r, conv_out_c), axis=1)
        else:
            output = conv_out_r

        output_shape = self.get_output_shape_for((None, self.input_length, self.input_dim))
        output = K.squeeze(output, 3)  # remove the dummy 3rd dimension
        output = K.permute_dimensions(output, (2, 1, 0))
        output = K.reshape(output, (-1, output_shape[1], output.shape[1]*output.shape[2]))
        return output
示例#2
0
def eigen_loss(y_true, y_pred):
    y_true = tf.Print(y_true, [y_true], message='y_true', summarize=30)
    y_pred = tf.Print(y_pred, [y_pred], message='y_pred', summarize=30)

    y_true_clipped = K.clip(y_true, K.epsilon(), None)
    y_pred_clipped = K.clip(y_pred, K.epsilon(), None)

    first_log = K.log(y_pred_clipped + 1.)
    second_log = K.log(y_true_clipped + 1.)
    w_x = K.variable(np.array([[-1., 0., 1.],
                                [-1., 0., 1.],
                                [-1., 0., 1.]]).reshape(3, 3, 1, 1))

    grad_x_pred = K.conv2d(first_log, w_x, padding='same')
    grad_x_true = K.conv2d(second_log, w_x, padding='same')

    w_y = K.variable(np.array([[-1., -1., -1.],
                                [0., 0., 0.],
                                [1., 1., 1.]]).reshape(3, 3, 1, 1))

    grad_y_pred = K.conv2d(first_log, w_y, padding='same')
    grad_y_true = K.conv2d(second_log, w_y, padding='same')
    diff_x = grad_x_pred - grad_x_true
    diff_y = grad_y_pred - grad_y_true

    log_term = K.mean(K.square((first_log - second_log)), axis=-1)
    sc_inv_term = K.square(K.mean((first_log - second_log),axis=-1))
    grad_loss = K.mean(K.square(diff_x) + K.square(diff_y), axis=-1)

    return log_term - (0.5 * sc_inv_term) + grad_loss
示例#3
0
    def get_output(self, train=False):
        print "Input Shape", self.input_shape
        print "ConvolutionDNASequenceBinding", self.output_shape
        X = self.get_input(train)
        if self.use_three_base_encoding:
            X_fwd = X[:,1:,:,:]
            X_rc = X[:,:3,:,:]
        else:
            X_fwd = X
            X_rc = X

        print self.W
        print self.b
        if self.W[1] is not None:
            W = self.W[0][self.W[1],:,:,:]
        else:
            W = self.W[0]
        if self.b[1] is not None:
            b = self.b[0][self.b[1]]
        else:
            b = self.b[0]
        
        fwd_rv = K.conv2d(X_fwd, W, border_mode='valid') \
                 + K.reshape(b, (1, self.nb_motifs, 1, 1))
        rc_rv = K.conv2d(X_rc, W[:,::-1,:,::-1], border_mode='valid') \
                + K.reshape(b, (1, self.nb_motifs, 1, 1))
        rv = K.concatenate((fwd_rv, rc_rv), axis=2)            
        #return rv.dimshuffle((0,3,2,1))
        return rv # K.permute_dimensions(rv, (0,3,2,1))
示例#4
0
 def get_output(self, train=False):
     print "LogNormalizedOccupancy", self.output_shape
     X = self.get_input(train)
     # calculate the log occupancies
     log_occs = theano_calc_log_occs(-X, self.chem_affinity)
     # reshape the output so that the forward and reverse complement 
     # occupancies are viewed as different tracks 
     log_occs = K.reshape(log_occs, (X.shape[0], 1, 2*X.shape[1], X.shape[3]))
     if self.steric_hindrance_win_len == 0:
         log_norm_factor = 0
     else:
         # correct occupancies for overlapping binding sites
         occs = K.exp(log_occs)
         kernel = K.ones((1, 1, 1, 2*self.steric_hindrance_win_len-1), dtype='float32')
         win_occ_sum = K.conv2d(occs, kernel, border_mode='same').sum(axis=2, keepdims=True)
         win_prb_all_unbnd = TT.exp(
             K.conv2d(K.log(1-occs), kernel, border_mode='same')).sum(axis=2, keepdims=True)
         log_norm_factor = TT.log(win_occ_sum + win_prb_all_unbnd)
     #start = max(0, self.steric_hindrance_win_len-1)
     #stop = min(self.output_shape[3], 
     #           self.output_shape[3]-(self.steric_hindrance_win_len-1))
     #rv = log_occs[:,:,:,start:stop] - log_norm_factor
     rv = (log_occs - log_norm_factor)
     return K.reshape(
         rv, 
         (X.shape[0], 2*X.shape[1], 1, X.shape[3])
     )
示例#5
0
 def get_output(self, train=False):
     X = self.get_input(train)
     fwd_rv = K.conv2d(X[:,:,:,:6], 
                       self.W, 
                       border_mode='valid') \
              + K.reshape(self.b, (1, self.nb_motifs, 1, 1))
     rc_rv = K.conv2d(X[:,:,:,-6:][:,::-1,::-1], 
                      self.W, 
                      border_mode='valid') \
             + K.reshape(self.b, (1, self.nb_motifs, 1, 1))
     return K.concatenate((fwd_rv, rc_rv), axis=3)
示例#6
0
def normals_metric(y_true, y_pred):

    y_true = K.variable(y_true)
    y_pred = K.variable(y_pred)

    y_true = K.expand_dims(y_true,0)


    filter_y = K.variable(np.array([[ 0., -0.5 , 0.],
                               [0., 0., 0.],
                               [0., 0.5, 0.]]).reshape(3, 3, 1, 1))


    filter_x = K.variable(np.array([ [0, 0., 0.],
                               [0.5, 0., -0.5],
                               [0., 0., 0.]]).reshape(3, 3, 1, 1))

    dzdx = K.conv2d(K.exp(y_true), filter_x, padding='same')
    dzdy = K.conv2d(K.exp(y_true), filter_y, padding='same')

    dzdx_ = dzdx * -1.0#K.constant(-1.0, shape=[batch_size,K.int_shape(y_pred)[1],K.int_shape(y_pred)[2],K.int_shape(y_pred)[3]]) #K.constant(-1.0, shape=K.int_shape(dzdx))
    dzdy_ = dzdy * -1.0#K.constant(-1.0, shape=[batch_size,K.int_shape(y_pred)[1],K.int_shape(y_pred)[2],K.int_shape(y_pred)[3]]) #K.constant(-1.0, shape=K.int_shape(dzdy))

    mag_norm = K.pow(dzdx,2) + K.pow(dzdy,2) + 1.0#K.constant(1.0, shape=[batch_size,K.int_shape(y_pred)[1],K.int_shape(y_pred)[2],K.int_shape(y_pred)[3]]) #K.constant(1.0, shape=K.int_shape(dzdx))

    mag_norm = K.sqrt(mag_norm)
    N3 = 1.0 / mag_norm #K.constant(1.0, shape=K.int_shape(dzdx)) / mag_norm
    N1 = dzdx_ / mag_norm
    N2 = dzdy_ / mag_norm

    normals = K.concatenate(tensors=[N1,N2,N3],axis=-1)

    dzdx_pred = K.conv2d(K.exp(y_pred), filter_x, padding='same')
    dzdy_pred = K.conv2d(K.exp(y_pred), filter_y, padding='same')

    mag_norm_pred = K.pow(dzdx_pred,2) + K.pow(dzdy_pred,2) + 1.0
    mag_norm_pred = K.sqrt(mag_norm_pred)

    grad_x = K.concatenate(tensors=[1.0/ mag_norm_pred,
                                    0.0/ mag_norm_pred, dzdx_pred/ mag_norm_pred],axis=-1)
    grad_y = K.concatenate(tensors=[0.0/ mag_norm_pred,
                                    1.0/ mag_norm_pred, dzdy_pred/ mag_norm_pred],axis=-1)


    dot_term_x = K.mean(K.sum(normals[0,:,:,:] * grad_x[0,:,:,:], axis=-1, keepdims=True), axis=-1)
    dot_term_y = K.mean(K.sum(normals[0,:,:,:] * grad_y[0,:,:,:], axis=-1, keepdims=True), axis=-1)


    dot_term_x = K.abs(dot_term_x)
    dot_term_y = K.abs(dot_term_y)

    return K.eval(K.mean(dot_term_x)),K.eval(K.mean(dot_term_y))
示例#7
0
文件: conv_lstm.py 项目: dblN/misc
    def step(self, x, states):
        h_tm1 = states[0]
        c_tm1 = states[1]

        x_i = K.conv2d(x, self.W_i, border_mode="same")
        x_f = K.conv2d(x, self.W_f, border_mode="same")
        x_c = K.conv2d(x, self.W_c, border_mode="same")
        x_o = K.conv2d(x, self.W_o, border_mode="same")

        h_i = K.conv2d(h_tm1, self.U_i, border_mode="same")
        h_f = K.conv2d(h_tm1, self.U_f, border_mode="same")
        h_c = K.conv2d(h_tm1, self.U_c, border_mode="same")
        h_o = K.conv2d(h_tm1, self.U_o, border_mode="same")

        c_i = self.C_i * c_tm1
        c_f = self.C_f * c_tm1
        c_o = self.C_o * c_tm1

        b_i = K.reshape(self.b_i, (1, -1, 1, 1))
        b_f = K.reshape(self.b_f, (1, -1, 1, 1))
        b_c = K.reshape(self.b_c, (1, -1, 1, 1))
        b_o = K.reshape(self.b_o, (1, -1, 1, 1))

        i = self.inner_activation(x_i + h_i + c_i + b_i)
        f = self.inner_activation(x_f + h_f + c_f + b_f)
        c = f * c_tm1 + i * self.activation(x_c + h_c + b_c)
        o = self.inner_activation(x_o + h_o + c_o + b_o)
        h = o * self.activation(c)

        return h, [h, c]
示例#8
0
    def call(self, inputs):
        if self.rank == 1:
            outputs = K.conv1d(
                inputs,
                self.kernel,
                strides=self.strides[0],
                padding=self.padding,
                data_format=self.data_format,
                dilation_rate=self.dilation_rate[0])
        if self.rank == 2:
            outputs = K.conv2d(
                inputs,
                self.kernel,
                strides=self.strides,
                padding=self.padding,
                data_format=self.data_format,
                dilation_rate=self.dilation_rate)
        if self.rank == 3:
            outputs = K.conv3d(
                inputs,
                self.kernel,
                strides=self.strides,
                padding=self.padding,
                data_format=self.data_format,
                dilation_rate=self.dilation_rate)

        if self.use_bias:
            outputs = K.bias_add(
                outputs,
                self.bias,
                data_format=self.data_format)

        if self.activation is not None:
            return self.activation(outputs)
        return outputs
def deconv2d_tied(x, kernel, strides=(1, 1), border_mode='valid', dim_ordering='th',
                  image_shape=None, filter_shape=None):
    '''
    Run on cuDNN if available.
    border_mode: string, "same" or "valid".
    '''
    if dim_ordering not in {'th', 'tf'}:
        raise Exception('Unknown dim_ordering ' + str(dim_ordering))

    ###
    if dim_ordering == 'default':
        dim_ordering = image_dim_ordering()
    if dim_ordering not in {'th', 'tf'}:
        raise ValueError('Unknown dim_ordering ', dim_ordering)

    x = K._preprocess_conv2d_input(x, dim_ordering)
    kernel = K._preprocess_conv2d_kernel(kernel, dim_ordering)
    th_border_mode = K._preprocess_border_mode(border_mode)
    np_kernel = kernel.eval()
    image_shape = K._preprocess_conv2d_image_shape(dim_ordering, image_shape)
    filter_shape = K._preprocess_conv2d_filter_shape(dim_ordering, filter_shape)

    conv_out = K.conv2d(x, kernel,
                        border_mode=th_border_mode,
                        subsample=strides,
                        filter_flip=False,  # <<<<< IMPORTANT 111, dont flip kern
                        input_shape=image_shape,
                        filter_shape=filter_shape)

    conv_out = K._postprocess_conv2d_output(conv_out, x, border_mode, np_kernel,   
                                          strides, dim_ordering)
    return conv_out
示例#10
0
文件: decode.py 项目: the-moliver/kfs
    def call(self, x, mask=None):
        x = K.permute_dimensions(x, (0, 2, 1))
        x = K.expand_dims(x, -1)

        output = K.square(K.permute_dimensions(K.squeeze(K.conv2d(x, self.kernel), -1), (0, 2, 1)))

        return output
示例#11
0
 def call(self, x, mask=None):
     conv_out = K.conv2d(x, self.W, strides=self.subsample,
                         border_mode=self.border_mode,
                         dim_ordering=self.dim_ordering,
                         filter_shape=self.W_shape)
     output = self.activation(conv_out)
     return output
示例#12
0
    def call(self, inputs):
        filter_in_group = self.filters / self.num_group
        if self.data_format == 'channels_first':
            channel_axis = 1
            input_in_group = self.channel_num / self.num_group
            outputs_list = []
            for i in range(self.num_group):
                outputs = K.conv2d(
                    inputs[:,i*input_in_group:(i+1)*input_in_group,:,:],
                    self.kernel[:, :, :, i*filter_in_group:(i+1)*filter_in_group],
                    strides=self.strides,
                    padding=self.padding,
                    data_format=self.data_format,
                    dilation_rate=self.dilation_rate)

                if self.use_bias:
                    outputs = K.bias_add(
                                         outputs,
                                         self.bias[i*filter_in_group:(i+1)*filter_in_group],
                                         data_format=self.data_format)
                outputs_list.append(outputs)

        elif self.data_format == 'channels_last':
            outputs_list = []
            channel_axis = -1
            input_in_group = self.channel_num / self.num_group
            for i in range(self.num_group):
                outputs = K.conv2d(
                    inputs[:, :, :, i*input_in_group:(i+1)*input_in_group],
                    self.kernel[:, :, :, i*filter_in_group:(i+1)*filter_in_group],
                    strides=self.strides,
                    padding=self.padding,
                    data_format=self.data_format,
                    dilation_rate=self.dilation_rate)

                if self.use_bias:
                    outputs = K.bias_add(
                                         outputs,
                                         self.bias[i*filter_in_group:(i+1)*filter_in_group],
                                         data_format=self.data_format)
                outputs_list.append(outputs)

        outputs = concatenate(outputs_list, axis=channel_axis)
        return outputs
 def gen_conv(x_slice):
     x_slice = K.expand_dims(x_slice,
                             1)  # shape (num_batches, 1, input_length)
     x_slice = K.expand_dims(
         x_slice, 2)  # shape (num_batches, 1, 1, input_length)
     return K.conv2d(x_slice,
                     wav_kernels,
                     strides=self.subsample,
                     padding=self.padding,
                     data_format='channels_first')
示例#14
0
def convolve_tensor(x, kernel_tensor=None):
    '''
    conv2d
    input tensor: [batch, in_height, in_width, in_channels]
    kernel tensor: [filter_height, filter_width, in_channels, out_channels]
    '''
    # x = tf.image.rgb_to_grayscale(x)
    print(x.shape)
    print(kernel_tensor.shape)
    return K.conv2d(x, kernel_tensor, padding='same')
示例#15
0
    def _loss(y_true, y_pred):
        kh, kv = get_sobel_kernel(size)  # (5,5)
        kh, kv = np.expand_dims(kh, -1), np.expand_dims(kv, -1)
        kernel = np.concatenate([kh, kv],
                                axis=-1)[...,
                                         None]  # (H, W, in_depth, out_depth)
        kernel = K.constant(kernel, dtype=tf.float32)

        gt_mask = K.cast(K.greater_equal(y_true[..., 0], K.epsilon()),
                         tf.float32)
        M = K.sum(gt_mask)

        # approximate to h/v grad and sum together
        gt_grad = K.conv2d(y_true, kernel, strides=(1, 1),
                           padding='same')  # (N,H,W,1)
        pr_grad = K.conv2d(y_pred, kernel, strides=(1, 1), padding='same')

        gmse_loss = K.square(gt_grad - pr_grad)[..., 0] * gt_mask
        return K.sum(gmse_loss) / M
示例#16
0
 def input_conv(self, x, w, b=None, padding='valid'):
     conv_out = K.conv2d(x,
                         w,
                         strides=self.strides,
                         padding=padding,
                         data_format=self.data_format,
                         dilation_rate=self.dilation_rate)
     if b is not None:
         conv_out = K.bias_add(conv_out, b, data_format=self.data_format)
     return conv_out
示例#17
0
    def __call__(self, image: plaidml.tile.Value,
                 feature_type: str) -> plaidml.tile.Value:
        """ Run the feature detection

        Parameters
        ----------
        image: Tensor
            Batch of images in YCxCz color space with normalized Y values
        feature_type: str
            Type of features to detect (`"edge"` or `"point"`)

        Returns
        -------
        Tensor
            Detected features in the 0-1 range
        """
        feature_type = feature_type.lower()

        if feature_type == 'edge':
            grad_x = np.multiply(-self._grid[0], self._gradient)
        else:
            grad_x = np.multiply(self._grid[0]**2 / (self._std**2) - 1,
                                 self._gradient)

        negative_weights_sum = -np.sum(grad_x[grad_x < 0])
        positive_weights_sum = np.sum(grad_x[grad_x > 0])

        grad_x = K.constant(grad_x)
        grad_x = K.switch(grad_x < 0, grad_x / negative_weights_sum,
                          grad_x / positive_weights_sum)
        kernel = K.expand_dims(K.expand_dims(grad_x, axis=-1), axis=-1)

        features_x = K.conv2d(replicate_pad(image, self._radius),
                              kernel,
                              strides=(1, 1),
                              padding="valid")
        kernel = K.permute_dimensions(kernel, (1, 0, 2, 3))
        features_y = K.conv2d(replicate_pad(image, self._radius),
                              kernel,
                              strides=(1, 1),
                              padding="valid")
        features = K.concatenate([features_x, features_y], axis=-1)
        return features
示例#18
0
 def get_output(self, train=False):
     print "ConvolutionBindingSubDomains", self.output_shape
     X = self.get_input(train)
     if self.W[1] is not None:
         W = self.W[0][self.W[1], :, :, :]
     else:
         W = self.W[0]
     if self.b[1] is not None:
         b = self.b[0][self.b[1]]
     else:
         b = self.b[0]
     fwd_rv = K.conv2d(X[:,:,0:1,:], W, border_mode='valid')  \
              + K.reshape(b, (1, self.nb_domains, 1, 1))
     # # [:,:,::-1,::-1]
     rc_rv = K.conv2d(X[:,:,1:2,:], W[:,:,:,::-1], border_mode='valid') \
             + K.reshape(b, (1, self.nb_domains, 1, 1))
     rv = K.concatenate((fwd_rv, rc_rv), axis=2)
     #return rv.dimshuffle((0,3,2,1))
     return rv  #K.permute_dimensions(rv, (0,3,2,1))
示例#19
0
 def call(self, inputs):
     multihead_attended = inputs
     o = K.conv2d(multihead_attended,
                  kernel=self.kernel_o,
                  strides=(1, 1),
                  padding='same')
     o = K.bias_add(o, self.bias_o)
     o = kl.Activation(activation)(o)
     self.o_sh = tuple(o.shape.as_list())
     return o
def get_grad_tensor(img_tensor, apply_gauss=True):
    grad_x = K.conv2d(img_tensor, SOBEL_X, padding='same')
    grad_y = K.conv2d(img_tensor, SOBEL_Y, padding='same')
    grad_tensor = K.sqrt(grad_x * grad_y + grad_y * grad_y)

    grad_tensor = K.greater(grad_tensor, 100.0 * K.epsilon())
    grad_tensor = K.cast(grad_tensor, K.floatx())
    grad_tensor = K.clip(grad_tensor, K.epsilon(), 1.0)
    grad_map = K.sum(grad_tensor, axis=CHANNEL_AXIS, keepdims=True)
    grad_map = [grad_map, grad_map]
    grad_tensor = K.concatenate(grad_map, axis=CHANNEL_AXIS)
    del grad_map
    grad_tensor = K.concatenate([grad_tensor, grad_tensor], axis=CHANNEL_AXIS)
    grad_tensor = K.greater(grad_tensor, 100.0 * K.epsilon())
    grad_tensor = K.cast(grad_tensor, K.floatx())
    print("K.floatx", K.floatx())
    if apply_gauss:
        grad_tensor = K.conv2d(grad_tensor, GAUSS_KERNEL, padding='same')
    return grad_tensor
示例#21
0
    def call(self, inputs):
        outputs = K.conv2d(inputs,
                           self.kernel,
                           strides=self.strides,
                           data_format=self.data_format,
                           dilation_rate=self.dilation_rate)

        outputs = K.bias_add(outputs, self.bias, data_format=self.data_format)

        return self.activation(outputs)
示例#22
0
    def call(self, x, mask=None):
        b, xb = 0., 0.
        if self.data_format == 'channels_first':
            kernel_sum_axes = [1, 2, 3]
            if self.use_bias:
                b = K.reshape(self.b, (self.filters, 1, 1, 1))
                xb = 1.
        elif self.data_format == 'channels_last':
            kernel_sum_axes = [0, 1, 2]
            if self.use_bias:
                b = K.reshape(self.b, (1, 1, 1, self.filters))
                xb = 1.

        Wnorm = K.sqrt(K.sum(K.square(self.W), axis=kernel_sum_axes, keepdims=True) + K.square(b) + K.epsilon())
        xnorm = K.sqrt(K.conv2d(K.square(x), self.kernel_norm, strides=self.strides,
                                padding=self.padding,
                                data_format=self.data_format,
                                filter_shape=self.kernel_norm_shape) + xb + K.epsilon())

        W = self.W / Wnorm

        output = K.conv2d(x, W, strides=self.strides,
                          padding=self.padding,
                          data_format=self.data_format,
                          filter_shape=self.kernel_shape)

        if K.backend() == 'theano':
            xnorm = K.pattern_broadcast(xnorm, [False, True, False, False])

        output /= xnorm

        if self.use_bias:
            b /= Wnorm
            if self.data_format == 'channels_first':
                b = K.reshape(b, (1, self.filters, 1, 1))
            elif self.data_format == 'channels_last':
                b = K.reshape(b, (1, 1, 1, self.filters))
            else:
                raise ValueError('Invalid data_format:', self.data_format)
            b /= xnorm
            output += b
        output = self.activation(output)
        return output
示例#23
0
def _computeSoftArgMin_(cv, d):
    softmax = tf.nn.softmax(cv, dim=1)
    #softmax = K.permute_dimensions(softmax, (0,2,3,1))
    disp_map = K.reshape(K.arange(0, d, dtype='float32'), (1, 1, d, 1))
    output = K.conv2d(softmax,
                      disp_map,
                      strides=(1, 1),
                      data_format='channels_first',
                      padding='valid')
    return K.squeeze(output, axis=1)
示例#24
0
 def get_output(self, train=False):
     print "ConvolutionBindingSubDomains", self.output_shape
     X = self.get_input(train)
     if self.W[1] is not None:
         W = self.W[0][self.W[1],:,:,:]
     else:
         W = self.W[0]
     if self.b[1] is not None:
         b = self.b[0][self.b[1]]
     else:
         b = self.b[0]
     fwd_rv = K.conv2d(X[:,:,0:1,:], W, border_mode='valid')  \
              + K.reshape(b, (1, self.nb_domains, 1, 1))
     # # [:,:,::-1,::-1]
     rc_rv = K.conv2d(X[:,:,1:2,:], W[:,:,:,::-1], border_mode='valid') \
             + K.reshape(b, (1, self.nb_domains, 1, 1))
     rv = K.concatenate((fwd_rv, rc_rv), axis=2)
     #return rv.dimshuffle((0,3,2,1))
     return rv #K.permute_dimensions(rv, (0,3,2,1))
示例#25
0
    def call(self, inputs):
        assert isinstance(inputs, list) and len(inputs) == 2
        #img, mask = inputs

        # Masked convolution:
        img_output = K.conv2d(inputs[0] * inputs[1],
                              self.kernel,
                              strides=self.strides,
                              padding=self.padding,
                              data_format=self.data_format)

        # Image scaling:
        sum_m = K.conv2d(inputs[1],
                         self.kernel_mask,
                         strides=self.strides,
                         padding=self.padding,
                         data_format=self.data_format)
        # Note, sum_1 does not need to be created via conv2d (as sum_m), it can be generated straight away:
        sum_1i = self.kernel_size[0] * self.kernel_size[1] * self.input_dim
        sum_1 = sum_1i * K.ones(K.shape(sum_m))
        # Prevent division by zero:
        sum_m_clip = K.clip(sum_m, 1., None)
        # Scale the image:
        img_output = img_output * (sum_1 / sum_m_clip)

        # Apply bias only to the image (if chosen to do so):
        if self.use_bias:
            img_output = K.bias_add(img_output,
                                    self.bias,
                                    data_format=self.data_format)

        # Apply activation if needed. Note, in the paper, activation is applied after BatchNormalization.
        if self.activation is not None:
            img_output = self.activation(img_output)

        if self.last_layer:
            return img_output

        # Update the mask:
        mask_output = K.clip(sum_m, 0., 1.)

        return [img_output, mask_output]
示例#26
0
 def func(input_):
     inputs = [
         input_[:, :, :, i:i + 1] for i in range(K.int_shape(input_)[-1])
     ]
     outputs = [
         K.conv2d(inp,
                  K.constant(gauss_kernel),
                  strides=(1, 1),
                  padding="same") for inp in inputs
     ]
     return K.concatenate(outputs, axis=-1)
示例#27
0
	def call(self, inputs):
		
		bs = K.shape(inputs)[0:1]
		shape1 = K.variable(np.array([self.n, self.filters]), dtype='int32')
		shape2 = K.variable(np.array([self.n, self.channels]), dtype='int32')
		shape1 = K.concatenate([bs, shape1])
		shape2 = K.concatenate([bs, shape2])
		f = K.conv2d(inputs, kernel = self.Wf, data_format = data_format)
		g = K.conv2d(inputs, kernel = self.Wg, data_format = data_format)
		h = K.conv2d(inputs, kernel = self.Wh, data_format = data_format)
		ff = K.reshape(f, shape1)
		gf = K.reshape(g, shape1)
		hf = K.reshape(h,shape2)#bs × n x c
		s = K.batch_dot(ff, gf, axes=(2,2))#bs x n x n
		beta = K.softmax(s)
		o = K.batch_dot(beta, hf, axes=(2,1))#bs x n x c
		o = K.reshape(o, K.shape(inputs))
		o = K.conv2d(o, kernel = self.Wv, data_format = data_format)
		y = self.gamma * o + inputs
		return y
示例#28
0
    def loss_tv(self, mask, y_comp):
        
        kernel = K.ones(shape=(3, 3, mask.shape[3], mask.shape[3]))
        dilated_mask = K.conv2d(1-mask, kernel, data_format='channels_last', padding='same')

        dilated_mask = K.cast(K.greater(dilated_mask, 0), 'float32')
        P = dilated_mask * y_comp
        
        a = self.l1(P[:,1:,:,:], P[:,:-1,:,:])
        b = self.l1(P[:,:,1:,:], P[:,:,:-1,:])        
        return a+b
示例#29
0
    def call(self, inputs):  # pylint: disable=arguments-differ

        pin = K.permute_dimensions(inputs, (0, 1, 3, 2))
        avg_conv = K.conv2d(pin,
                            self.kernel,
                            strides=(1, 1),
                            padding="valid",
                            data_format='channels_last',
                            dilation_rate=(1, 1))
        output = K.permute_dimensions(avg_conv, (0, 1, 3, 2))
        return output
示例#30
0
    def local_mean_subtraction(self, X, kernel_size=5):

        filter_shape = (1, 1, kernel_size, kernel_size)
        filters = self.mean_filter(kernel_size).reshape(filter_shape)
        filters = K.variable(filters)

        mean = K.conv2d(X,
                        filters,
                        filter_shape=filter_shape,
                        border_mode='same')
        return X - mean
示例#31
0
 def call(self, inputs, mask=None):
     #print(inputs * inputs)
     one_kernel = K.ones((self.kernelSize[0], self.kernelSize[0],
                          self.nInputPlane, self.nOutputPlane))
     inputs_norm = K.conv2d(inputs * inputs,
                            one_kernel,
                            strides=self.strides,
                            padding=self.padding)
     inputs_norm = K.sqrt(inputs_norm)
     #print(inputs_norm)
     conv = K.conv2d(inputs,
                     self.kernelWeights,
                     strides=self.strides,
                     padding=self.padding)
     #print("+++", conv / ( inputs_norm * K.sqrt(K.sum(self.kernelWeights*self.kernelWeights))))
     #print(K.sqrt(K.sum(self.kernelWeights*self.kernelWeights)))
     g = conv / (inputs_norm *
                 K.sqrt(K.sum(self.kernelWeights * self.kernelWeights)))
     h = self.alpha * inputs_norm
     return h * g
示例#32
0
 def testDilatedConv2D(self):
     I = K.variable(m(2, 6, 10, 3))
     kernel = K.variable(m(3, 2, 3, 2))
     code = """function (I[N, Lx, Ly, CI], K[LKx, LKy, CI, CO]) -> (O) {
                   O[n, x, y, co: N, Lx - 2 * (LKx - 1), Ly - 3 * (LKy - 1), CO] =
                           +(I[n, x + 2 * kx, y + 3 * ky, ci] * K[kx, ky, ci, co]);
               }"""
     op = K._Op('cumulative_sum', I.dtype, (2, 2, 7, 2), code,
                OrderedDict([('I', I), ('K', kernel)]), ['O'])
     reference = K.conv2d(I, kernel, padding='valid', dilation_rate=(2, 3))
     npt.assert_allclose(op.eval(), reference.eval())
示例#33
0
    def call(self, inputs):
        if self.rank == 1:
            expert_outputs = K.conv1d(inputs,
                                      self.expert_kernel,
                                      strides=self.strides[0],
                                      padding=self.padding,
                                      data_format=self.data_format,
                                      dilation_rate=self.dilation_rate[0])
        if self.rank == 2:
            expert_outputs = K.conv2d(inputs,
                                      self.expert_kernel,
                                      strides=self.strides,
                                      padding=self.padding,
                                      data_format=self.data_format,
                                      dilation_rate=self.dilation_rate)
        if self.rank == 3:
            expert_outputs = K.conv3d(inputs,
                                      self.expert_kernel,
                                      strides=self.strides,
                                      padding=self.padding,
                                      data_format=self.data_format,
                                      dilation_rate=self.dilation_rate)

        expert_outputs = K.reshape(expert_outputs,
                                   (-1, ) + self.o_shape[1:-1] +
                                   (self.n_filters, self.n_experts_per_filter))

        if self.use_expert_bias:
            expert_outputs = K.bias_add(expert_outputs,
                                        self.expert_bias,
                                        data_format=self.data_format)

        if self.expert_activation is not None:
            expert_outputs = self.expert_activation(expert_outputs)

        gating_outputs = tf.tensordot(
            inputs, self.gating_kernel,
            axes=self.rank + 1)  # samples x n_filters x n_experts_per_filter

        if self.use_gating_bias:
            gating_outputs = K.bias_add(gating_outputs,
                                        self.gating_bias,
                                        data_format=self.data_format)

        if self.gating_activation is not None:
            gating_outputs = self.gating_activation(gating_outputs)

        gating_outputs = K.reshape(gating_outputs,
                                   self.new_gating_outputs_shape)
        outputs = K.sum(expert_outputs * gating_outputs,
                        axis=-1,
                        keepdims=False)

        return outputs
示例#34
0
 def call(self, inputs):
     output = K.conv2d(inputs,
                       self.kernel * self.scale,
                       padding=self.padding)
     if self.use_bias:
         output = K.bias_add(output, self.bias)
     if self.activation is not tf.keras.activations.linear:
         output = self.activation(output)
     elif self.lrelu:
         output = LeakyReLU(alpha=0.2)(output)
     return output
    def get_initial_states(self, x):
        initial_state = K.sum(x, axis=1)
        print('what is this: ',
              (self.nb_filters_out, self.nb_filters_in, 1, 1))
        initial_state = K.conv2d(initial_state,
                                 K.zeros((self.nb_filters_out,
                                          self.nb_filters_in, 1, 1)),
                                 padding='same')
        initial_states = [initial_state for _ in range(len(self.states))]

        return initial_states
示例#36
0
文件: layer.py 项目: mrjzz/IDCN
 def call(self, inputs):
     shape = K.shape(inputs)
     if self.keep_dims:
         y = K.conv2d(inputs, self.dct_kernel)
     else:
         y = K.conv2d_transpose(inputs,
                                self.dct_kernel,
                                output_shape=(shape[0], shape[1] + 7,
                                              shape[2] + 7, 1))
         y = y * self.scale_kernel
     return y
示例#37
0
 def call(self, inputs, **kwargs):
     tower1 = K.conv2d(x=inputs,
                       kernel=self.K1,
                       strides=(1, 1),
                       padding='same',
                       dilation_rate=self.dilation_rate
                       )
     tower1 = K.conv2d(x=tower1,
                       kernel=self.K2,
                       strides=(1, 1),
                       padding='same',
                       dilation_rate=self.dilation_rate
                       )
     tower2 = K.conv2d(x=inputs,
                       kernel=self.K3,
                       strides=(1, 1),
                       padding='same',
                       dilation_rate=self.dilation_rate
                       )
     tower3 = MaxPool2D(
             pool_size=(2*self.dilation_rate[0],2*self.dilation_rate[1]),
             padding='same',
                        strides=(1,1),
                        )(inputs)
     tower3 = K.conv2d(x=tower3,
                       kernel=self.K4,
                       strides=(1,1),
                       padding='same',
                       dilation_rate=(1, 1)
                       )
     output = K.concatenate((tower1,tower2,tower3))
     output = K.conv2d(x=output,
                       kernel=self.K5,
                       strides=(1,1),
                       padding='same',
                       dilation_rate=(1,1)
                       )
     if self.use_softmax:
         return K.softmax(output)
     else:
         return K.relu(output)
    def call(self, inputs, **kwargs):
        def sqrt(x):
            return K.sqrt(K.maximum(x, K.epsilon()))

        # Both components and input given
        if isinstance(inputs, list) and len(inputs) > 1:
            signals, kernel = inputs
        else:
            signals = inputs
            kernel = self.components.astype(K.floatx())

        # move component_number to channel dimension
        kernel = K.permute_dimensions(kernel, (1, 2, 3, 0))
        # normalize kernel
        normed_kernel = kernel / sqrt(
            K.sum(K.square(kernel), (0, 1, 2), keepdims=True))

        # get norm of signals
        signals_norm = sqrt(
            K.conv2d(K.square(signals),
                     np.ones(K.int_shape(kernel)[:3] + (1, ),
                             dtype=K.floatx()),
                     strides=self.strides,
                     padding=self.padding,
                     data_format='channels_last',
                     dilation_rate=self.dilation_rate))

        diss = K.conv2d(signals,
                        normed_kernel,
                        strides=self.strides,
                        padding=self.padding,
                        data_format='channels_last',
                        dilation_rate=self.dilation_rate) / signals_norm

        if self.n_replicas != 1:
            shape = K.int_shape(diss)
            diss = K.reshape(diss,
                             (-1, shape[1], shape[2],
                              shape[3] // self.n_replicas, self.n_replicas))

        return self.activation(diss)
 def call(self, inputs):
     output = []
     for eachlen in range(self.seq_len):
         tmp = K.bias_add(
             K.conv2d(inputs[:, eachlen, :, :, :],
                      self.kernel[eachlen],
                      strides=self.strides,
                      padding=self.padding), self.bias[eachlen])
         if self.activation is not None:
             output += [self.activation(tmp)]
     output = tf.stack(output, axis=1)
     return output
 def call(self, x):
     if self.binarize_input_ == True:
         x = Binarization(x)
     self.binary_kernel = Binarization(K.clip(self.float_kernel, -1.0, 1.0))
     x = K.spatial_2d_padding(x,
                              padding=((self.pad_, self.pad_), (self.pad_,
                                                                self.pad_)))
     return K.conv2d(x,
                     self.binary_kernel,
                     strides=(self.stride_, self.stride_),
                     padding='valid',
                     data_format='channels_last')
示例#41
0
def ori_loss(y_true, y_pred, lamb=1.):
    # clip
    y_pred = K.tf.clip_by_value(y_pred, K.epsilon(), 1 - K.epsilon())
    # get ROI
    label_seg = K.sum(y_true, axis=-1, keepdims=True)
    label_seg = K.tf.cast(K.tf.greater(label_seg, 0), K.tf.float32) 
    # weighted cross entropy loss
    lamb_pos, lamb_neg = 1., 1. 
    logloss = lamb_pos*y_true*K.log(y_pred)+lamb_neg*(1-y_true)*K.log(1-y_pred)
    logloss = logloss*label_seg # apply ROI
    logloss = -K.sum(logloss) / (K.sum(label_seg) + K.epsilon())
    # coherence loss, nearby ori should be as near as possible
    mean_kernal = np.reshape(np.array([[1, 1, 1], [1, 1, 1], [1, 1, 1]], dtype=np.float32)/8, [3, 3, 1, 1])    
    sin2angle_ori, cos2angle_ori, modulus_ori = ori2angle(y_pred)
    sin2angle = K.conv2d(sin2angle_ori, mean_kernal, padding='same')
    cos2angle = K.conv2d(cos2angle_ori, mean_kernal, padding='same')
    modulus = K.conv2d(modulus_ori, mean_kernal, padding='same')
    coherence = K.sqrt(K.square(sin2angle) + K.square(cos2angle)) / (modulus + K.epsilon())
    coherenceloss = K.sum(label_seg) / (K.sum(coherence*label_seg) + K.epsilon()) - 1
    loss = logloss + lamb*coherenceloss
    return loss
    def call(self, x):
        f = K.conv2d(x,
                     kernel=self.kernel_f,
                     strides=(1, 1), padding='same')  # [bs, h, w, c']
        g = K.conv2d(x,
                     kernel=self.kernel_g,
                     strides=(1, 1), padding='same')  # [bs, h, w, c']
        h = K.conv2d(x,
                     kernel=self.kernel_h,
                     strides=(1, 1), padding='same')  # [bs, h, w, c]

        s = K.batch_dot(_hw_flatten(g), K.permute_dimensions(_hw_flatten(f), (0, 2, 1)))  # # [bs, N, N]

        beta = K.softmax(s, axis=-1)  # Attention map

        o = K.batch_dot(beta, _hw_flatten(h))  # [bs, N, C]

        o = K.reshape(o, shape=K.shape(x))  # [bs, h, w, C]
        x = self.gamma * o + x

        return x
示例#43
0
    def call(self, inputs):

        print(inputs.shape)
        filters = self.U()
        print(filters.shape)
        #filters /= T.sum(filters, axis=(2, 3)).dimshuffle(0, 1, 'x', 'x')
        # channel_first means tensofrlow
        conved = K.conv2d(inputs,
                          filters,
                          padding=self.padding,
                          data_format=self.data_format)
        return conved
示例#44
0
def find_patch_matches(a, a_norm, b):
    '''For each patch in A, find the best matching patch in B'''
    convs = None
    if K.backend() == 'theano':
        # HACK: This was not being performed on the GPU for some reason.
        from theano.sandbox.cuda import dnn
        if dnn.dnn_available():
            convs = dnn.dnn_conv(
                img=a, kerns=b[:, :, ::-1, ::-1], border_mode='valid')
    if convs is None:
        convs = K.conv2d(a, b[:, :, ::-1, ::-1], border_mode='valid')
    argmax = K.argmax(convs / a_norm, axis=1)
    return argmax
示例#45
0
文件: decode.py 项目: the-moliver/kfs
    def call(self, x, mask=None):
        x = K.permute_dimensions(x, (0, 2, 1))
        x = K.expand_dims(x, -1)

        conv_out = K.permute_dimensions(K.squeeze(K.conv2d(x, self.kernel), -1), (0, 2, 1))

        conv_out_s = conv_out[:,:,:self.nb_simple]

        conv_out_c = K.square(conv_out[:,:,self.nb_simple:])

        output = K.concatenate((conv_out_s, conv_out_c), axis=-1)

        return output
示例#46
0
    def get_output(self, train=False):
        X = train
        X = K.expand_dims(X, -1)  # add a dimension of the right
        X = K.permute_dimensions(X, (0, 2, 1, 3))
        conv_out = K.conv2d(X, self.W, strides=self.subsample,
                            border_mode=self.border_mode,
                            dim_ordering='th')

        output = conv_out + K.reshape(self.b, (1, self.nb_filter, 1, 1))
        output = self.activation(output)
        output = K.squeeze(output, 3)  # remove the dummy 3rd dimension
        output = K.permute_dimensions(output, (0, 2, 1))
        return output
示例#47
0
    def get_output(self, train=False):
        X = self.get_input(train)
        conv_out = K.conv2d(X, self.W1, strides=(1, 1),
                            border_mode='same',
                            dim_ordering=self.dim_ordering)
        if self.dim_ordering == 'tf':
            channels = [conv_out[:, :, :, i:i+1] for i in range(self.nb_filter)]
        elif self.dim_ordering == 'th':
            channels = [conv_out[:, i:i+1, :, :] for i in range(self.nb_filter)]
        conv_channels = [K.conv2d(channels[i], self.conv_Ws[i],
                         strides=self.subsample, border_mode=self.border_mode,
                         dim_ordering=self.dim_ordering) for i in range(self.nb_filter)]
        if self.dim_ordering == 'tf':
            conv_out = K.concatenate(conv_channels, axis=3)
        if self.dim_ordering == 'th':
            conv_out = K.concatenate(conv_channels, axis=1)

        if self.dim_ordering == 'th':
            output = conv_out + K.reshape(self.b, (1, self.nb_filter, 1, 1))
        elif self.dim_ordering == 'tf':
            output = conv_out + K.reshape(self.b, (1, 1, 1, self.nb_filter))
        output = self.activation(output)
        return output
示例#48
0
 def call(self, x, mask=None):
     output = K.conv2d(x, self.W, strides=self.subsample,
                       border_mode=self.border_mode,
                       dim_ordering=self.dim_ordering,
                       filter_shape=self.W_shape)
     if self.bias:
         if self.dim_ordering == 'th':
             output += K.reshape(self.b, (1, self.nb_filter, 1, 1))
         elif self.dim_ordering == 'tf':
             output += K.reshape(self.b, (1, 1, 1, self.nb_filter))
         else:
             raise Exception('Invalid dim_ordering: ' + self.dim_ordering)
     output = K.square(self.activation(output))
     return output
示例#49
0
 def get_output(self, train=False):
     print "ConvolutionCoOccupancy", self.output_shape, self.input_shape
     X = self.get_input(train)
     if self.W[1] is not None:
         W = self.W[0][self.W[1],:,:,:]
     else:
         W = self.W[0]
     if self.b[1] is not None:
         b = self.b[0][self.b[1]]
     else:
         b = self.b[0]
     rv = K.conv2d(X[:,:,:,:], W, border_mode='valid')  \
              + K.reshape(b, (1, self.nb_domains, 1, 1))
     #return rv.dimshuffle((0,3,2,1))
     return rv #K.permute_dimensions(rv, (0,3,2,1))
示例#50
0
 def get_output(self, train=False):
     X = self.get_input(train)
     conv_out = K.conv2d(X, self.kernel, strides=self.strides,
                         border_mode='same',
                         dim_ordering=self.dim_ordering,
                         image_shape=self.input_shape,
                         filter_shape=self.kernel_shape)
     if self.dim_ordering == 'th':
         output = conv_out + K.reshape(self.biases, (1, self.nb_filter, 1, 1))
     elif self.dim_ordering == 'tf':
         output = conv_out + K.reshape(self.biases, (1, 1, 1, self.nb_filter))
     else:
         raise Exception('Invalid dim_ordering: ' + self.dim_ordering)
     output = K.relu(output)
     return output
示例#51
0
    def call(self, x, mask=None):

        input_shape = x._keras_shape

        if self.convolution_type=='1D':
            output = []
            for i in range(input_shape[-1]):
                x_col = x[:,:,:,i].dimshuffle(0,1,2,'x')
                w_col = self.W[:,:,:,i].dimshuffle(0,1,2,'x')
                filter_shape=list(self.W_shape[:-1])+[1]
                col_output = K.conv2d(x_col, w_col, strides=self.subsample,
                                  border_mode=self.border_mode,
                                  dim_ordering=self.dim_ordering,
                                  filter_shape=tuple(filter_shape))
                if self.bias:
                    if self.dim_ordering == 'th':
                        col_output += K.reshape(self.b, (1, self.nb_filter, 1, 1))
                    elif self.dim_ordering == 'tf':
                        col_output += K.reshape(self.b, (1, 1, 1, self.nb_filter))
                    else:
                        raise Exception('Invalid dim_ordering: ' + self.dim_ordering)
                col_output = self.activation(col_output)
                output.append(col_output)

            y = K.concatenate(output,axis=-1)
            return y

        if self.convolution_type=='bow':
            # bow-conv
            start = range(0, self.bow_output_length )
            y = []
            for s in start:
                y.append(K.sum(x[:, :, s:s + self.bow_size, :], axis=2))

            y = K.concatenate(y, axis=2)


            x = K.reshape(y, (-1, input_shape[1], self.bow_output_length, input_shape[3]))

        x = super(Convolution2DWrapper, self).call(x, mask)
        if self.convolution_type=='bow':
            x = T.transpose(x,[0,3,2,1])



        return x
示例#52
0
    def build(self):
        if self.dim_ordering == 'th':
            stack_size = self.input_shape[1]
            input_width = self.input_shape[2]
            input_height = self.input_shape[3]
            self.input_space_dim = stack_size * self.nb_row * self.nb_col
            self.kernel_shape = (self.nb_filter, stack_size, self.nb_row, self.nb_col)
            self.identity_kernel_shape = (self.input_space_dim, stack_size, 1, 1)
        elif self.dim_ordering == 'tf':
            stack_size = self.input_shape[3]
            input_width = self.input_shape[1]
            input_height = self.input_shape[2]
            self.input_space_dim = stack_size * self.nb_row * self.nb_col
            self.kernel_shape = (self.nb_row, self.nb_col, stack_size, self.nb_filter)
            self.identity_kernel_shape = (1, 1, stack_size, self.input_space_dim)
        else:
            raise Exception('Invalid dim_ordering: ' + self.dim_ordering)
        self.kernel = self.init(self.kernel_shape)
        self.biases = K.zeros((self.nb_filter,))
        self.trainable_weights = [self.kernel, self.biases]

        self.feature_sums = K.zeros((self.input_space_dim,))
        self.feature_covariance_sums = K.zeros((self.input_space_dim, self.input_space_dim))
        self.non_trainable_weights = [self.feature_sums, self.feature_covariance_sums]

        np_identity_kernel = np.ones(self.input_space_dim * stack_size).reshape(self.identity_kernel_shape)
        self.identity_kernel = K.variable(np_identity_kernel)
        x = self.get_input(train=False)
        x_flat = K.conv2d(x, self.identity_kernel,
                          border_mode='same',
                          dim_ordering=self.dim_ordering,
                          image_shape=self.input_shape,
                          filter_shape=self.identity_kernel_shape)
        batch_size = self.input_shape[0]
        x_flat = K.reshape(x_flat, (batch_size * input_width * input_height, self.input_space_dim))

        feature_sums_update = self.momentum * self.feature_sums + (1 - self.momentum) * K.sum(x_flat, axis=0)
        feature_covariance_sums_update = self.momentum * self.feature_covariance_sums + (1 - self.momentum) * K.dot(K.transpose(x_flat), x_flat)
        self.updates = [(self.feature_sums, feature_sums_update),
                        (self.feature_covariance_sums, feature_covariance_sums_update)]

        self.regularizers = [self.pmi_regularizer]
    def conv_step(self, x, W, b=None, border_mode="valid"):
        input_shape = self.input_spec[0].shape

        conv_out = K.conv2d(x, W, strides=self.subsample,
                            border_mode=border_mode,
                            dim_ordering=self.dim_ordering,
                            image_shape=(input_shape[0],
                                         input_shape[2],
                                         input_shape[3],
                                         input_shape[4]),
                            filter_shape=self.W_shape)
        if b:
            if self.dim_ordering == 'th':
                conv_out = conv_out + K.reshape(b, (1, self.nb_filter, 1, 1))
            elif self.dim_ordering == 'tf':
                conv_out = conv_out + K.reshape(b, (1, 1, 1, self.nb_filter))
            else:
                raise Exception('Invalid dim_ordering: ' + self.dim_ordering)

        return conv_out
    def conv_step_hidden(self, x, W, border_mode="valid"):
        # This new function was defined because the
        # image shape must be hardcoded
        input_shape = self.input_spec[0].shape
        output_shape = self.get_output_shape_for(input_shape)

        if self.return_sequences:
            out_row, out_col, out_filter = output_shape[2:]
        else:
            out_row, out_col, out_filter = output_shape[1:]

        conv_out = K.conv2d(x, W, strides=(1, 1),
                            border_mode=border_mode,
                            dim_ordering=self.dim_ordering,
                            image_shape=(input_shape[0],
                                         out_row, out_col,
                                         out_filter),
                            filter_shape=self.W_shape1)

        return conv_out
示例#55
0
    def call(self, inputs):
        assert self.rank == 2, 'only conv2d supported for now...'
        if self.rank == 2:
            outputs = K.conv2d(
                inputs,
                self.kernel,
                strides=self.strides,
                padding=self.padding,
                data_format=self.data_format,
                dilation_rate=self.dilation_rate)

        if self.use_bias:
            outputs = K.bias_add(
                outputs,
                self.bias,
                data_format=self.data_format)


        #if self.activation is not None:
        #    assert False,'activation functions not supported'
        #    return self.activation(outputs)
        return outputs
示例#56
0
def make_soft(y_true, fragment_length, nb_output_bins, train_with_soft_target_stdev, with_prints=False):
    receptive_field, _ = compute_receptive_field()
    n_outputs = fragment_length - receptive_field + 1

    # Make a gaussian kernel.
    kernel_v = scipy.signal.gaussian(9, std=train_with_soft_target_stdev)
    print(kernel_v)
    kernel_v = np.reshape(kernel_v, [1, 1, -1, 1])
    kernel = K.variable(kernel_v)

    if with_prints:
        y_true = print_t(y_true, 'y_true initial')

    # y_true: [batch, timesteps, input_dim]
    y_true = K.reshape(y_true, (-1, 1, nb_output_bins, 1))  # Same filter for all output; combine with batch.
    # y_true: [batch*timesteps, n_channels=1, input_dim, dummy]
    y_true = K.conv2d(y_true, kernel, padding='same')
    y_true = K.reshape(y_true, (-1, n_outputs, nb_output_bins))  # Same filter for all output; combine with batch.
    # y_true: [batch, timesteps, input_dim]
    y_true /= K.sum(y_true, axis=-1, keepdims=True)

    if with_prints:
        y_true = print_t(y_true, 'y_true after')
    return y_true
示例#57
0
def offset_conv2d_eval(depth, padding, x):
    """Perform a conv2d on x with a given padding"""
    kernel = K.variable(value=np.array([[[[1]] + [[0]] * (depth - 1)]]),
                        dtype='float32')
    return K.conv2d(x, kernel, strides=(3, 3), padding=padding)
def deconv2d_fast(x, kernel, strides=(1, 1), border_mode='valid', dim_ordering='th',
                  image_shape=None, filter_shape=None):
    '''
    Run on cuDNN if available.
    border_mode: string, "same" or "valid".
    '''
    if dim_ordering not in {'th', 'tf'}:
        raise Exception('Unknown dim_ordering ' + str(dim_ordering))

    if dim_ordering == 'tf':
        # TF uses the last dimension as channel dimension,
        # instead of the 2nd one.
        # TH input shape: (samples, input_depth, rows, cols)
        # TF input shape: (samples, rows, cols, input_depth)
        # TH kernel shape: (depth, input_depth, rows, cols)
        # TF kernel shape: (rows, cols, input_depth, depth)
        x = x.dimshuffle((0, 3, 1, 2))
        kernel = kernel.dimshuffle((3, 2, 0, 1))
        if image_shape:
            image_shape = (image_shape[0], image_shape[3],
                           image_shape[1], image_shape[2])
        if filter_shape:
            filter_shape = (filter_shape[3], filter_shape[2],
                            filter_shape[0], filter_shape[1])

    if _on_gpu() and dnn.dnn_available():
        if border_mode == 'same':
            assert (strides == (1, 1))
            conv_out = dnn.dnn_conv(img=x,
                                    kerns=kernel,
                                    border_mode='full')
            shift_x = (kernel.shape[2] - 1) // 2
            shift_y = (kernel.shape[3] - 1) // 2
            conv_out = conv_out[:, :,
                                shift_x:x.shape[2] + shift_x,
                                shift_y:x.shape[3] + shift_y]
        else:
            conv_out = dnn.dnn_conv(img=x,
                                    conv_mode='cross',
                                    kerns=kernel,
                                    border_mode=border_mode,
                                    subsample=strides)
    else:
        if border_mode == 'same':
            th_border_mode = 'full'
            assert (strides == (1, 1))
        elif border_mode == 'valid':
            th_border_mode = 'valid'
        else:
            raise Exception('Border mode not supported: ' + str(border_mode))

        conv_out = K.conv2d(x, kernel,
                            border_mode=th_border_mode,
                            subsample=strides,
                            filter_flip=False,  # <<<<< IMPORTANT 111, dont flip kern
                            input_shape=image_shape,
                            filter_shape=filter_shape)
        if border_mode == 'same':
            shift_x = (kernel.shape[2] - 1) // 2
            shift_y = (kernel.shape[3] - 1) // 2
            conv_out = conv_out[:, :,
                                shift_x:x.shape[2] + shift_x,
                                shift_y:x.shape[3] + shift_y]
    if dim_ordering == 'tf':
        conv_out = conv_out.dimshuffle((0, 2, 3, 1))
    return conv_out
def find_patch_matches(a, a_norm, b):
    '''For each patch in A, find the best matching patch in B'''
    # we want cross-correlation here so flip the kernels
    convs = K.conv2d(a, b[:, :, ::-1, ::-1], border_mode='valid')
    argmax = K.argmax(convs / a_norm, axis=1)
    return argmax
示例#60
0
def log_normals_loss(y_true, y_pred):
    y_true = tf.Print(y_true, [y_true], message='y_true', summarize=30)
    y_pred = tf.Print(y_pred, [y_pred], message='y_pred', summarize=30)

    #compute normals with convolution approach
    # (http://answers.opencv.org/question/82453/calculate-surface-normals-from-depth-image-using-neighboring-pixels-cross-product/)
    config, unparsed = get_config()
    batch_size = config.batch_size

    #y_true_clipped = K.clip(y_true, K.epsilon(), None)#40.0)
    #y_pred_clipped = K.clip(y_pred, K.epsilon(), None)
    y_true_clipped = y_true
    y_pred_clipped = y_pred

    filter_y = K.variable(np.array([[ 0., -0.5 , 0.],
                               [0., 0., 0.],
                               [0., 0.5, 0.]]).reshape(3, 3, 1, 1))


    filter_x = K.variable(np.array([ [0, 0., 0.],
                               [0.5, 0., -0.5],
                               [0., 0., 0.]]).reshape(3, 3, 1, 1))
    w_x = K.variable(np.array([[-1., 0., 1.],
                               [-1., 0., 1.],
                               [-1., 0., 1.]]).reshape(3, 3, 1, 1))

    w_y = K.variable(np.array([[-1., -1., -1.],
                               [0., 0., 0.],
                               [1., 1., 1.]]).reshape(3, 3, 1, 1))

    #dzdx = K.conv2d(K.exp(y_true_clipped), w_x, padding='same')
    #dzdy = K.conv2d(K.exp(y_true_clipped), w_y, padding='same')
    dzdx = K.conv2d(y_true_clipped, w_x, padding='same')
    dzdy = K.conv2d(y_true_clipped, w_y, padding='same')

    dzdx_ = dzdx * -1.0#K.constant(-1.0, shape=[batch_size,K.int_shape(y_pred)[1],K.int_shape(y_pred)[2],K.int_shape(y_pred)[3]]) #K.constant(-1.0, shape=K.int_shape(dzdx))
    dzdy_ = dzdy * -1.0#K.constant(-1.0, shape=[batch_size,K.int_shape(y_pred)[1],K.int_shape(y_pred)[2],K.int_shape(y_pred)[3]]) #K.constant(-1.0, shape=K.int_shape(dzdy))

    mag_norm = K.pow(dzdx,2) + K.pow(dzdy,2) + 1.0#K.constant(1.0, shape=[batch_size,K.int_shape(y_pred)[1],K.int_shape(y_pred)[2],K.int_shape(y_pred)[3]]) #K.constant(1.0, shape=K.int_shape(dzdx))

    mag_norm = K.sqrt(mag_norm)
    N3 = 1.0 / mag_norm #K.constant(1.0, shape=K.int_shape(dzdx)) / mag_norm
    N1 = dzdx_ / mag_norm
    N2 = dzdy_ / mag_norm

    normals = K.concatenate(tensors=[N1,N2,N3],axis=-1)

    #dzdx_pred = K.conv2d(K.exp(y_pred_clipped), w_x, padding='same')
    #dzdy_pred = K.conv2d(K.exp(y_pred_clipped), w_y, padding='same')
    dzdx_pred = K.conv2d(y_pred_clipped, w_x, padding='same')
    dzdy_pred = K.conv2d(y_pred_clipped, w_y, padding='same')

    mag_norm_pred_x = K.pow(dzdx_pred,2) + 1.0
    mag_norm_pred_x = K.sqrt(mag_norm_pred_x)
    mag_norm_pred_y = K.pow(dzdy_pred, 2) + 1.0
    mag_norm_pred_y = K.sqrt(mag_norm_pred_y)

    grad_x = K.concatenate(tensors=[K.constant(1.0, shape=[batch_size, K.int_shape(y_pred)[1], K.int_shape(y_pred)[2], K.int_shape(y_pred)[3]])/ mag_norm_pred_x,
                                    K.constant(0.0, shape=[batch_size, K.int_shape(y_pred)[1], K.int_shape(y_pred)[2], K.int_shape(y_pred)[3]])/ mag_norm_pred_x, dzdx_pred/ mag_norm_pred_x],axis=-1)
    grad_y = K.concatenate(tensors=[K.constant(0.0, shape=[batch_size, K.int_shape(y_pred)[1], K.int_shape(y_pred)[2], K.int_shape(y_pred)[3]])/ mag_norm_pred_y,
                                    K.constant(1.0, shape=[batch_size, K.int_shape(y_pred)[1], K.int_shape(y_pred)[2], K.int_shape(y_pred)[3]])/ mag_norm_pred_y, dzdy_pred/ mag_norm_pred_y],axis=-1)

    first_log = K.log(y_pred_clipped + 1.)
    second_log = K.log(y_true_clipped + 1.)

    log_term = K.sqrt(K.mean(K.square(first_log - second_log), axis=-1) + 0.00001)

    dot_term_x = K.sum(normals[:,:,:,:] * grad_x[:,:,:,:], axis=-1, keepdims=True)
    dot_term_y = K.sum(normals[:,:,:,:] * grad_y[:,:,:,:], axis=-1, keepdims=True)
    #dot_term_x = K.mean(K.sum(normals[:, :, :, :] * grad_x[:, :, :, :], axis=-1, keepdims=True), axis=-1)
    #dot_term_y = K.mean(K.sum(normals[:, :, :, :] * grad_y[:, :, :, :], axis=-1, keepdims=True), axis=-1)


    dot_term_x = tf.Print(dot_term_x, [dot_term_x], message='dot_term_x', summarize=30)
    dot_term_y = tf.Print(dot_term_y, [dot_term_y], message='dot_term_y', summarize=30)

    #commentare per vecchia versione
    sc_inv_term = K.square(K.mean((first_log - second_log), axis=-1))
    norm_term = K.mean(K.square(dot_term_x), axis=-1) + K.mean(K.square(dot_term_y), axis=-1)

    diff_x = dzdx_pred - dzdx
    diff_y = dzdy_pred - dzdy
    grad_loss = K.mean(K.square(diff_x) + K.square(diff_y), axis=-1)

    loss = log_term - (0.5 * sc_inv_term) + norm_term #+ grad_loss
    #loss = log_term + K.square(dot_term_x) + K.square(dot_term_y)

    return loss