示例#1
0
文件: simec.py 项目: BigRLab/simec
 def __call__(self, x):
     regularization = 0.
     if self.l2_reg > 0.:
         regularization += K.sum(self.l2_reg * K.square(x))
     if self.reshape is None:
         if self.s_ll_reg > 0.:
             regularization += self.s_ll_reg * K.mean(
                 self.errfun(self.S_ll, K.dot(K.transpose(x), x)))
         if self.orth_reg > 0.:
             regularization += self.orth_reg * K.mean(
                 K.square((K.ones(
                     (self.embedding_dim, self.embedding_dim)) - K.eye(
                         self.embedding_dim)) * K.dot(x, K.transpose(x))))
     else:
         x_reshaped = K.reshape(x, self.reshape)
         for i in range(self.reshape[2]):
             if self.s_ll_reg > 0.:
                 regularization += self.s_ll_reg * K.mean(
                     self.errfun(
                         self.S_ll[:, :, i],
                         K.dot(K.transpose(x_reshaped[:, :, i]),
                               x_reshaped[:, :, i])))
             if self.orth_reg > 0.:
                 regularization += self.orth_reg * K.mean(
                     K.square((K.ones(
                         (self.embedding_dim, self.embedding_dim)) -
                               K.eye(self.embedding_dim)) *
                              K.dot(x_reshaped[:, :, i],
                                    K.transpose(x_reshaped[:, :, i]))))
     return regularization
示例#2
0
 def call(self, x):
     if self.stateful:
         output_list = []
         for index in range(self.batch_size):
             current_matrix = x[index]
             prev_matrix = self.initial_SE3[index]
             current_cumulative = tf.matmul(current_matrix, prev_matrix)
             #iself.initial_SE3[index]  = current_cumulative
             output_list.append(current_cumulative)
         if (self.batch_size and self.batch_size > 0):
             output_tensor = K.stack(output_list)
             updates = list(zip(self.initial_SE3, output_list))
             self.add_update(updates, x)
         else:
             output_tensor = K.stack([K.eye(4)])
         return output_tensor
     else:
         output_list = []
         prev_matrix = self.initial_SE3[0]
         for index in range(self.batch_size):
             current_matrix = x[index]
             current_cumulative = tf.matmul(current_matrix, prev_matrix)
             prev_matrix = current_cumulative
             output_list.append(current_cumulative)
         if (self.batch_size and self.batch_size > 0):
             output_tensor = K.stack(output_list)
         else:
             output_tensor = K.stack([K.eye(4)])
         return output_tensor
    def call(self, x):
        """
        x: Nx D1 x D2
        W1 : D1 x d1
        W2: D2 x d2
        W: D2 x D2
        """
        # first mode projection
        x = nmodeproduct(x, self.W1, 1)  # N x d1 x D2
        # enforcing constant (1) on the diagonal
        W = self.W - self.W * K.eye(self.in_shape[2], dtype='float32') + K.eye(
            self.in_shape[2], dtype='float32') / self.in_shape[2]
        # calculate attention
        attention = Activations.softmax(nmodeproduct(x, W, 2),
                                        axis=-1)  # N x d1 x D2
        # apply attention
        x = self.alpha * x + (1.0 - self.alpha) * x * attention
        # second mode projection
        x = nmodeproduct(x, self.W2, 2)
        # bias add
        x = x + self.bias

        if self.output_dim[1] == 1:
            x = K.squeeze(x, axis=-1)
        return x
示例#4
0
    def call(self, inputs, training=None):
        z, gamma_k = inputs

        gamma_k_sum = K.sum(gamma_k)
        est_phi = K.mean(gamma_k, axis=0)
        est_mu = K.dot(K.transpose(gamma_k), z) / gamma_k_sum
        est_sigma = K.dot(K.transpose(z - est_mu), gamma_k *
                          (z - est_mu)) / gamma_k_sum

        est_sigma = est_sigma + (K.random_normal(
            shape=(K.int_shape(z)[1], 1), mean=1e-3, stddev=1e-4) *
                                 K.eye(K.int_shape(z)[1]))

        self.add_update(K.update(self.phi, est_phi), inputs)
        self.add_update(K.update(self.mu, est_mu), inputs)
        self.add_update(K.update(self.sigma, est_sigma), inputs)

        est_sigma_diag_inv = K.eye(K.int_shape(self.sigma)[0]) / est_sigma
        self.add_loss(self.lambd_diag * K.sum(est_sigma_diag_inv), inputs)

        phi = K.in_train_phase(est_phi, self.phi, training)
        mu = K.in_train_phase(est_mu, self.mu, training)
        sigma = K.in_train_phase(est_sigma, self.sigma, training)
        return GaussianMixtureComponent._calc_component_density(
            z, phi, mu, sigma)
    def _mh_loss(y_true, y_pred):
        positive = K.reshape(K.sum(K.eye(n) * y_pred, axis=0), (n, 1))
        negative_captions = y_pred - K.eye(n) * alpha
        negative_images = K.transpose(negative_captions)

        return K.sum(
            K.max(K.maximum(0., alpha - positive +
                            negative_captions), axis=1) +
            K.max(K.maximum(0., alpha - positive + negative_images), axis=1))
示例#6
0
 def __call__(self, x):
     size = int(np.sqrt(x.shape[1].value))
     assert (size * size == x.shape[1].value)
     x = K.reshape(x, (-1, size, size))
     xxt = K.batch_dot(x, x, axes=(2, 2))
     regularization = 0.0
     if self.l1:
         regularization += K.sum(self.l1 * K.abs(xxt - K.eye(size)))
     if self.l2:
         regularization += K.sum(self.l2 * K.square(xxt - K.eye(size)))
     return regularization
示例#7
0
def page_ranking(query, candidates):
    reprs = K.concatenate((query[None, :], candidates), axis=0)
    sims = K.dot(reprs, K.transpose(reprs))
    W_mask = 1 - K.eye(maxsents + 1)
    W = W_mask * sims
    d = (K.epsilon() + K.sum(W, axis=0))**-1
    D = K.eye(maxsents + 1) * d
    P = K.dot(W, D)
    y = K.concatenate((K.ones(1), K.zeros(maxsents)))
    x_r = (1 - alpha) * K.dot(
        T.nlinalg.matrix_inverse(K.eye(maxsents + 1) - alpha * P), y)
    return x_r[1:]
示例#8
0
文件: myclass.py 项目: yyht/PPVAE
    def Mask(self, inputs):
        mask = K.eye(self.max_len)  #[ml, ml]
        mask = K.cumsum(mask, 1)  #[ml,ml]
        mask = K.expand_dims(mask, axis=0)  #[bs, ml, ml]

        eye = K.eye(self.max_len)
        eye = K.expand_dims(eye, axis=0)
        mask = mask - eye

        mask = K.expand_dims(mask, axis=1)  #[1,1, ml,ml]
        mask = K.permute_dimensions(mask, (0, 3, 2, 1))

        return inputs - mask * 1e12
示例#9
0
def gp(x, hyp, n_high, n_low):
    rho = hyp[0,6]#reset up for convenience
    x_l = x[0:n_low]
    x_h = x[n_low:n_high + n_low]
    K_LL = kerne1(x_l, x_l, hyp[0,0:3]) + K.eye(n_low)* K.pow(hyp[0,2],2)
    K_LH = rho*kerne1(x_l, x_h, hyp[0,0:3])
    K_HL = rho*kerne1(x_h, x_l, hyp[0,0:3])
    K_HH = K.pow(rho, 2) * kerne1(x_h, x_h, hyp[0,0:3]) \
                + kerne1(x_h, x_h, hyp[0,3:5]) + K.eye(n_high)* K.pow(hyp[0,5],2)
    k_up = K.concatenate([K_LL, K_LH], axis = -1)
    k_down = K.concatenate([K_HL, K_HH], axis = -1)
    k = K.concatenate([k_up, k_down], axis = 0)
    return k
示例#10
0
def tangent_distance(signals, protos, subspaces,
                     squared=False,
                     epsilon=K.epsilon()):
    # Note: subspaces is always assumed as transposed and must be orthogonal!
    # shape(signals): batch x proto_number x channels x dim1 x dim2 x ... x dimN
    # shape(protos): proto_number x dim1 x dim2 x ... x dimN
    # shape(subspaces): (optional [proto_number]) x prod(dim1 * dim2 * ... * dimN)  x prod(projected_atom_shape)

    signal_shape = mixed_shape(signals)
    shape = tuple([i if isinstance(i, int) else None for i in signal_shape])
    subspace_shape = K.int_shape(subspaces)

    if not equal_shape((shape[1],) + shape[3:], K.int_shape(protos)):
        raise ValueError("The shape of signals[2:] must be equal protos. You provide: signals.shape[2:]="
                         + str((shape[1],) + shape[3:]) + " != protos.shape=" + str(K.int_shape(protos)))

    with K.name_scope('tangent_distance'):
        atom_axes = list(range(3, len(signal_shape)))
        signals = K.permute_dimensions(signals, [0, 2, 1] + atom_axes)
        diff = signals - protos

        # global tangent space
        if K.ndim(subspaces) == 2:
            with K.name_scope('projector'):
                projector = K.eye(subspace_shape[-2]) - K.dot(subspaces, K.transpose(subspaces))

            with K.name_scope('tangentspace_projections'):
                diff = K.reshape(diff, (signal_shape[0] * signal_shape[2], signal_shape[1], -1))
                projected_diff = K.dot(diff, projector)
                projected_diff = K.reshape(projected_diff,
                                           (signal_shape[0], signal_shape[2], signal_shape[1]) + signal_shape[3:])

            diss = p_norm(projected_diff, order_p=2, axis=atom_axes, squared=squared, keepdims=False, epsilon=epsilon)
            return K.permute_dimensions(diss, [0, 2, 1])

        # local tangent spaces
        elif K.ndim(subspaces) == 3:
            with K.name_scope('projector'):
                projector = K.eye(subspace_shape[-2]) - K.batch_dot(subspaces, subspaces, [2, 2])

            with K.name_scope('tangentspace_projections'):
                diff = K.reshape(diff, (signal_shape[0] * signal_shape[2], signal_shape[1], -1))
                diff = K.permute_dimensions(diff, [1, 0, 2])
                projected_diff = K.batch_dot(diff, projector)
                projected_diff = K.reshape(projected_diff,
                                           (signal_shape[1], signal_shape[0], signal_shape[2]) + signal_shape[3:])

            diss = p_norm(projected_diff, order_p=2, axis=atom_axes, squared=squared, keepdims=False, epsilon=epsilon)
            return K.permute_dimensions(diss, [1, 0, 2])
示例#11
0
    def build(self, shape_input):
        """ Build the RNN Cell using certain variables. We have the number of stations M;
        we set the initial conditions for mu and pfd as randomely chosen following a uniform
        distrobution. We add a weight that tracks the mu values. We set a constaint that is
        is non-negative. We set a weight that tracks the matrix P, and we set constraints
        as detailed in the report. We define the 'odot' function as shown in the paper. """

        M = shape_input[1] - 1
        self.I = k_back.eye(M)
        init_mu = RandomUniform(minval=0.01, maxval=10)
        init_pfd = RandomUniform(minval=0.01, maxval=10)
        self.mu = self.add_weight('mu',
                                  shape=(M, 1),
                                  initializer=init_mu,
                                  constraint=NonNeg())
        data_p = self.add_weight('data_p',
                                 shape=(M, M - 1),
                                 initializer=init_pfd,
                                 constraint=NonNeg())
        data_p_scaled = data_p / k_back.sum(data_p, axis=1, keepdims=True)
        self.P = k_back.reshape(
            k_back.flatten(data_p_scaled)[None, :] @ k_back.one_hot(
                [j for j in range(M * M) if j % (M + 1) != 0], M * M), (M, M))
        self.odot = (self.P - self.I) * self.mu
        self.is_built = True
示例#12
0
    def call(self, xw, mask=None):
        # input: mu_i/sigma2_i
        x, weights = xw
        gamma = K.sum(x * weights, axis=1)
        N = K.sum(weights, axis=1, keepdims=True)
        var_i = K.exp(self.D)
        cov_i = K.dot(self.chol.T * var_i, self.chol)
        #var_i = K.expand_dims(K.exp(self.D), axis=-1)
        #cov_i = K.dot(self.chol, var_i*self.chol.T)
        prec_i = K.expand_dims(K2.matrix_inverse(cov_i), axis=0)

        I = K.expand_dims(K.eye(self.units, dtype=float_keras()), axis=0)
        #prec = I + N * (prec_i - I)
        prec = I + N * prec_i

        fcov = lambda x: K2.matrix_inverse(x)
        cov = K.map_fn(fcov, prec)
        cov = 0.5 * (cov + K.permute_dimensions(cov, [0, 2, 1]))

        mu = K.batch_dot(gamma, cov)

        fchol = lambda x: K2.cholesky(x, lower=False)
        chol = K.map_fn(fchol, cov)

        fdiag = lambda x: K2.diag(x)
        sigma = K.map_fn(fdiag, chol)

        chol = chol / K.expand_dims(sigma, axis=-1)
        logvar = 2 * K.log(sigma)

        return [mu, logvar, chol]
示例#13
0
def masked_softmax(input_layer, n_nodes, batch_size):
    """
    A Lambda layer to mask a matrix of outputs to be lower-triangular.

    Each row must sum up to one. We apply a lower triangular mask of ones
    and then add an upper triangular mask of a large negative number.

    Parameters
    ----------
    input_layer: keras layer object
        (n x 1, n) matrix

    Returns
    -------
    output_layer: keras layer object
        (n x 1, n) matrix
    """
    mask_lower = K.theano.tensor.tril(K.ones((n_nodes - 1, n_nodes)))
    mask_upper = \
        K.theano.tensor.triu(-100. * K.ones((n_nodes - 1, n_nodes)), 1)
    mask_layer = mask_lower * input_layer + mask_upper
    mask_layer = mask_layer + 2 * K.eye(n_nodes)[0:n_nodes - 1, 0:n_nodes]
    mask_layer = \
        K.reshape(mask_layer, (batch_size * (n_nodes - 1), n_nodes))
    softmax_layer = K.softmax(mask_layer)
    output_layer = K.reshape(softmax_layer, (batch_size, n_nodes - 1, n_nodes))
    return output_layer
    def call (self, inputs, mask=None):
        features = inputs[0] # Shape: (None, num_nodes, num_features)
        A = inputs[1:]  # Shapes: (None, num_nodes, num_nodes)

        eye = A[0] * K.zeros(self.num_nodes, dtype='float32') + K.eye(self.num_nodes, dtype='float32')

        # eye = K.eye(self.num_nodes, dtype='float32')

        if self.consecutive_links:
            shifted = tf.manip.roll(eye, shift=1, axis=0)
            A.append(shifted)

        if self.backward_links:
            for i in range(len(A)):
                A.append(K.permute_dimensions(A[i], [0, 2, 1]))

        if self.self_links:
            A.append(eye)

        AHWs = list()
        for i in range(self.num_adjacency_matrices):
            if self.edge_weighting:
                features *= self.W_edges[i]
            HW = K.dot(features, self.W[i]) # Shape: (None, num_nodes, output_dim)
            AHW = K.batch_dot(A[i], HW) # Shape: (None, num_nodes, num_features)
            AHWs.append(AHW)
        AHWs_stacked = K.stack(AHWs, axis=1) # Shape: (None, num_supports, num_nodes, num_features)
        output = K.max(AHWs_stacked, axis=1) # Shape: (None, num_nodes, output_dim)

        if self.bias:
            output += self.b
        return self.activation(output)
示例#15
0
    def FeatureTransformNet(ipts):
        """ipts is a keras tensor"""
        ipt = Input(shape=(points, 1, 64), name="FeatureTransformNet_Input")
        net = Conv2D(filters=64, kernel_size=(1, 1), activation="relu")(ipt)
        net = Conv2D(filters=128, kernel_size=(1, 1), activation="relu")(net)
        net = Conv2D(filters=1024, kernel_size=(1, 1), activation="relu")(net)

        max_pool = MaxPool2D(pool_size=(points, 1))(net)

        net = Flatten()(max_pool)
        net = Dense(units=512, activation="relu")(net)
        net = Dense(units=256, activation="relu")(net)
        net = Dense(units=64 * 64)(net)

        bias = Input(tensor=K.eye(64, dtype="float32"),
                     name="FeatureTransformNet_Bias")

        expand = Lambda(function=lambda x: K.expand_dims(x, axis=0))(bias)
        expand = Flatten()(expand)
        # added = Add()([net, expand])
        added = Lambda(function=lambda t: t[0] + t[1])([net, expand])
        result = Reshape(target_shape=(64, 64),
                         name="FeatureTransformNet_Output")(added)

        model = Model(inputs=[ipt, bias], outputs=[result])
        print("Feature transform net:")
        model.summary()
        return model([ipts, bias]), bias
示例#16
0
    def triplet_batch_hard_loss(y_true, y_pred):
        # y_pred is the embedding, y_true is the IDs (labels) of the samples (not 1-hot encoded)
        # They are mini-batched. If batch_size is B, and embedding dimension is D, shapes are:
        #   y_true: (B,)
        #   y_pred: (B,D)

        # Get all-pairs distances
        y_true = K.sum(y_true, axis=1)
        diffs = K.expand_dims(y_pred, axis=1) - K.expand_dims(y_pred, axis=0)
        dist_mat = K.sqrt(K.sum(K.square(diffs), axis=-1) + K.epsilon())
        same_identity_mask = K.equal(K.expand_dims(y_true, axis=1),
                                     K.expand_dims(y_true, axis=0))
        # TODO: make this backend-agnostic somehow
        negative_mask = T.bitwise_not(same_identity_mask)
        # XOR ensures that the same sample is paired with itself
        positive_mask = T.bitwise_xor(same_identity_mask,
                                      K.eye(batch_size, dtype='bool'))
        #print(K.int_shape(y_true))
        #print(K.int_shape(y_pred))

        #positive_mask = T.bitwise_xor(same_identity_mask, T.eye(K.int_shape(y_true)[0]))

        furthest_positive = K.max(dist_mat * positive_mask, axis=1)
        #closest_negative = K.min(dist_mat*negative_mask + np.inf*same_identity_mask, axis=1)
        closest_negative = K.min(dist_mat * negative_mask +
                                 1e6 * same_identity_mask,
                                 axis=1)

        loss = final_loss_tensor(furthest_positive, closest_negative)
        return loss
示例#17
0
    def f(target, score):

        # Compute mask (-1 for different class, 1 for same class, 0 for diagonal)
        mask = (2 * K.equal(0, target - K.reshape(target, (-1, 1))) - 1)
        mask = (mask - K.eye(score.shape[0]))

        # Compute distance between rows
        mag = (score**2).sum(axis=-1)
        mag = K.tile(mag, (mag.shape[0], 1))
        dist = (mag + mag.T - 2 * score.dot(score.T))
        dist = K.sqrt(K.maximum(0, dist))

        # Negative component (points from different class should be far)
        l_n = K.sum((K.exp(margin - dist) * K.equal(mask, -1)), axis=-1)
        l_n = K.tile(l_n, (score.shape[0], 1))
        l_n = K.log(l_n + K.transpose(l_n))
        l_n = l_n * K.equal(mask, 1)

        # Positive component (points from same class should be close)
        l_p = dist * K.equal(mask, 1)

        loss = K.sum((K.maximum(0, l_n + l_p)**2))
        n_pos = K.sum(K.equal(mask, 1))
        loss /= (2 * n_pos)

        return loss
示例#18
0
文件: layers.py 项目: tr3e/TF_PG_GANS
    def call(self, input, **kargs):
        if K.ndim(input) > 2:
            # if the input has more than two dimensions, flatten it into a
            # batch of feature vectors.
            input = K.flatten(input)
        actv = K.batch_dot(input, self.kernel, [[1], [0]])
        abs_dif = (K.sum(K.abs(
            K.expand_dims(K.permute_dimensions(actv, [0, 1, 2])) -
            K.expand_dims(K.permute_dimensions(actv, [1, 2, 0]), 0)),
                         axis=2) +
                   1e6 * K.expand_dims(K.eye(K.int_shape(input)[0]), 1))
        if self.init_arg:
            mean_min_abs_dif = 0.5 * K.mean(K.min(abs_dif, axis=2), axis=0)
            abs_dif /= K.expand_dims(K.expand_dims(mean_min_abs_dif, 0))
            self.init_updates = [
                (self.log_weight_scale, self.log_weight_scale -
                 K.expand_dims(K.log(mean_min_abs_dif)))
            ]
        f = K.sum(K.exp(-abs_dif), axis=2)

        if self.init_arg:
            mf = K.mean(f, axis=0)
            f -= K.expand_dims(mf, 0)
            self.init_updates += [(self.bias, -mf)]
        else:
            f += K.expand_dims(self.bias, 0)

        return K.concatenate([input, f], axis=1)
示例#19
0
def trace_loss(transition_matrices, num_labels, beta):
    """
    Implementation of the generation of transition matrices 
    based on the features, as proposed by 
    
    Luo et al.: "Learning with Noise: Enhance Distantly Supervised 
    Relation Extractionwith Dynamic Transition Matrix". ACL 2017.
    
    This implements Formula 5 or 6, depending on how it is added to 
    the model.
    
    The input is the tensor obtained from the DynamicTransitionMatrixGeneration
    layer, the number of labels (i.e. number of rows or columns of the
    dynamic transition matrix) and the beta scalar that scales this loss.
    
    The negative value of the trace is used (as in the paper). That
    means that a large, positive beta will push the model towards the
    identity matrix, while a negative beta will push the generated
    transition matrices towards the off diagonals (noisy settings).
    """
    eye_tensor = K.eye(num_labels)

    def trace_loss_function(y_true, y_pred):
        # Obtaining trace by multiplying with the identity matrix
        # and then summing. This sums up over all identify matrices,
        # but this is fine since the beta factor is the same for
        # all instances in formula 5. For formula 6, if different
        # beta factors should be taken into account, different
        # models with different instanciations of this loss
        # need to be compiled.
        #
        return beta * -K.sum(transition_matrices * eye_tensor)

    return trace_loss_function
示例#20
0
 def __call__(self, x):
     xshape = K.int_shape(x)
     if self.axis is 'last':
         x = K.reshape(x, (-1, xshape[-1]))
         x /= K.sqrt(K.sum(K.square(x), axis=0, keepdims=True))
         xx = K.dot(K.transpose(x), x)
         return self.gamma * K.sum(
             K.log(1.0 + K.exp(self.lam * (xx - 1.0))) *
             (1.0 - K.eye(xshape[-1])))
     elif self.axis is 'first':
         x = K.reshape(x, (xshape[0], -1))
         x /= K.sqrt(K.sum(K.square(x), axis=1, keepdims=True))
         xx = K.dot(x, K.transpose(x))
         return self.gamma * K.sum(
             K.log(1.0 + K.exp(self.lam * (xx - 1.0))) *
             (1.0 - K.eye(xshape[0])))
示例#21
0
def ipca_model_shap(dense2, predict, n_concept, input_size, concept_matrix):
  """returns model that calculates of SHAP."""
  pool1f_input = Input(shape=(input_size,), name='cluster1')
  concept_mask = Input(shape=(n_concept,), name='mask')
  proj_weight = Weight((input_size, n_concept))(pool1f_input)
  concept_mask_r = Lambda(lambda x: K.mean(x, axis=0, keepdims=True))(
      concept_mask)
  proj_weight_m = Lambda(lambda x: x[0] * x[1])([proj_weight, concept_mask_r])
  eye = K.eye(n_concept) * 1e-10
  proj_recon_t = Lambda(
      lambda x: K.dot(x, tf.linalg.inv(K.dot(K.transpose(x), x) + eye)))(
          proj_weight_m)
  proj_recon = Lambda(lambda x: K.dot(K.dot(x[0], x[2]), K.transpose(x[1])))(
      [pool1f_input, proj_weight_m, proj_recon_t])
  fc2_pr = dense2(proj_recon)
  softmax_pr = predict(fc2_pr)
  finetuned_model_pr = Model(
      inputs=[pool1f_input, concept_mask], outputs=softmax_pr)
  finetuned_model_pr.compile(
      loss='categorical_crossentropy',
      optimizer=SGD(lr=0.000),
      metrics=['accuracy'])
  finetuned_model_pr.summary()
  finetuned_model_pr.layers[-7].set_weights([concept_matrix])
  return finetuned_model_pr
示例#22
0
文件: invLayer.py 项目: phcchan/invNN
 def build(self, input_shape):
     if self.kernel is None:
         (p, l, u, u_diag_sign, u_diag_abs_log, l_mask,
          u_mask) = self.initializer(input_shape)
         self.kernel_p = self.add_weight(name='kernel_p',
                                         shape=p.shape,
                                         initializer=lambda _: p,
                                         trainable=False)
         self.kernel_l = self.add_weight(name='kernel_l',
                                         shape=l.shape,
                                         initializer=lambda _: l,
                                         trainable=True)
         self.kernel_u = self.add_weight(name='kernel_u',
                                         shape=u.shape,
                                         initializer=lambda _: u,
                                         trainable=True)
         self.kernel_u_diag_sign = self.add_weight(
             name='kernel_u_diag_sign',
             shape=u_diag_sign.shape,
             initializer=lambda _: u_diag_sign,
             trainable=False)
         self.kernel_u_diag_abs_log = self.add_weight(
             name='kernel_u_diag_abs_log',
             shape=u_diag_abs_log.shape,
             initializer=lambda _: u_diag_abs_log,
             trainable=True)
         self.kernel_l = self.kernel_l * l_mask + K.eye(input_shape[-1])
         self.kernel_u = self.kernel_u * u_mask + K.tf.diag(
             self.kernel_u_diag_sign * K.exp(self.kernel_u_diag_abs_log))
         self.kernel = K.dot(K.dot(self.kernel_p, self.kernel_l),
                             self.kernel_u)
示例#23
0
 def uncorrelated_feature(self, x):
     if(self.encoding_dim <= 1):
         return 0.0
     else:
         output = K.sum(K.square(
             self.covariance - tf.math.multiply(self.covariance, K.eye(self.encoding_dim))))
         return output
示例#24
0
    def categorical_accuracy(y_true, y_pred):
        """
        Return a categorical accuracy tensor for label and prediction tensors.

        Args:
            y_true: the ground truth labels to compare against
            y_pred: the predicted labels from a loss network

        Returns:
            a tensor of the categorical accuracy between truth and predictions

        """
        # get number of labels to calculate IoU for
        num_classes = K.int_shape(y_pred)[-1]
        # set the weights to all 1 if there are none specified
        _weights = np.ones(num_classes) if weights is None else weights
        # convert the one-hot tensors into discrete label tensors with ArgMax
        y_true = K.flatten(K.argmax(y_true, axis=-1))
        y_pred = K.flatten(K.argmax(y_pred, axis=-1))
        # calculate the confusion matrix of the ground truth and predictions
        confusion = confusion_matrix(y_true, y_pred, num_classes=num_classes)
        # confusion will return integers, but we need floats to multiply by eye
        confusion = K.cast(confusion, K.floatx())
        # extract the number of correct guesses from the diagonal
        correct = _weights * K.sum(confusion * K.eye(num_classes), axis=-1)
        # extract the number of total values per class from ground truth
        total = _weights * K.sum(confusion, axis=-1)
        # calculate the total accuracy
        return K.sum(correct) / K.sum(total)
def trace(tensors, keepdims=False):
    # trace of a squared matrix
    with K.name_scope('trace'):
        shape = mixed_shape(tensors)
        int_shape = K.int_shape(tensors)

        if not equal_int_shape([int_shape[-1]], [int_shape[-2]]):
            raise ValueError(
                "The matrix dimension (the two last dimensions) of the tensor must be squared. "
                "You provide: " + str(int_shape[-2:]) + ".")
        if int_shape[-1] is None and int_shape[-2] is None:
            raise ValueError(
                'At least one dimension of the matrix must be defined. You provide: '
                + str(int_shape))

        # K.eye() doesn't accept placeholders. Thus, one dim must be specified.
        if int_shape[-1] is None:
            matrix_dim = shape[-2]
        else:
            matrix_dim = shape[-1]

        t = K.sum(tensors * K.eye(matrix_dim), axis=[-1, -2])
        if keepdims:
            t = K.expand_dims(K.expand_dims(t, -1), -1)

        return t
示例#26
0
    def ortho_reg(weight_matrix):
        # orthogonal regularization for aspect embedding matrix
        w_n = weight_matrix / K.cast(K.epsilon() + K.sqrt(K.sum(K.square(weight_matrix), axis=-1, keepdims=True)),
                                     K.floatx())
        reg = K.sum(K.square(K.dot(w_n, K.transpose(w_n)) - K.eye(w_n.shape[0].value)))

        return args.ortho_reg * reg
示例#27
0
 def loss(y_true, y_pred):
     multiplier = K.ones((50, 50)) - K.eye(50)
     #pdb.set_trace()
     multiplier = K.expand_dims(multiplier, axis=0)
     multiplier = K.repeat_elements(multiplier, 50, 0)
     curLoss = K.maximum((m - y_pred) * multiplier, 0.)
     return l2 * curLoss
示例#28
0
    def call(self, x):
        assert isinstance(x, list)
        inp_a, inp_b = x

        outp_a = K.l2_normalize(inp_a, -1)
        outp_b = K.l2_normalize(inp_b, -1)
        alpha = K.batch_dot(outp_b, outp_a, axes=[2, 2])
        alpha = K.l2_normalize(alpha, 1)
        alpha = K.one_hot(K.argmax(alpha, 1), K.int_shape(inp_a)[1])
        hmax = K.batch_dot(alpha, outp_b, axes=[1, 1])
        kcon = K.eye(K.int_shape(inp_a)[1], dtype='float32')

        m = []
        for i in range(self.output_dim):
            outp_a = inp_a * self.W[i]
            outp_hmax = hmax * self.W[i]
            outp_a = K.l2_normalize(outp_a, -1)
            outp_hmax = K.l2_normalize(outp_hmax, -1)
            outp = K.batch_dot(outp_hmax, outp_a, axes=[2, 2])
            outp = K.sum(outp * kcon, -1, keepdims=True)
            m.append(outp)
        if self.output_dim > 1:
            persp = K.concatenate(m, 2)
        else:
            persp = m[0]
        return [persp, persp]
def gaussian(x):
    # the last dimensions of y_true and y_pred should be n * (n + 1), where the first 'n' elements correspond to the
    # means and the last n*n elements are the entries in the covariance matrix (row-wise)

    # the results will be [mean, flattened precision matrix]

    shape = K.int_shape(x)
    n = int((sqrt(4 * shape[-1] + 1) - 1) / 2)

    # flatten both
    x_flat = K.reshape(x, (-1, shape[-1]))

    # find the predicted mean and variance for both y_true and y_pred
    mean = K.reshape(x_flat[:, :n], (-1, n))
    cov_a = K.reshape(x_flat[:, n:], (-1, n, n))

    # compute (cov_a) (cov_a^T) + I
    precision = K.batch_dot(K.permute_dimensions(cov_a, (0, 2, 1)),
                            cov_a,
                            axes=[1, 2]) + K.expand_dims(K.eye(n), axis=0)

    # merge them together
    merged = K.concatenate([mean, K.reshape(precision, (-1, n * n))], axis=-1)

    # un-flatten it
    return K.reshape(merged, K.shape(x))
示例#30
0
    def call(self, x):
        assert isinstance(x, list)
        inp_a, inp_b = x

        outp_a = K.l2_normalize(inp_a, -1)
        outp_b = K.l2_normalize(inp_b, -1)
        alpha = K.batch_dot(outp_b, outp_a, axes=[2, 2])
        alpha = K.l2_normalize(alpha, 1)
        alpha = K.one_hot(K.argmax(alpha, 1), K.int_shape(inp_a)[1])
        hmax = K.batch_dot(alpha, outp_b, axes=[1, 1])
        kcon = K.eye(K.int_shape(inp_a)[1], dtype='float32')

        m = []
        for i in range(self.output_dim):
            outp_a = inp_a * self.W[i]
            outp_hmax = hmax * self.W[i]
            outp_a = K.l2_normalize(outp_a, -1)
            outp_hmax = K.l2_normalize(outp_hmax, -1)
            outp = K.batch_dot(outp_hmax, outp_a, axes=[2, 2])
            outp = K.sum(outp * kcon, -1, keepdims=True)
            m.append(outp)
        if self.output_dim > 1:
            persp = K.concatenate(m, 2)
        else:
            persp = m
        return [persp, persp]
示例#31
0
    def call(self, u_vecs):
        if self.share_weights:
            u_hat_vecs = K.conv1d(u_vecs, self.W)
        else:
            u_hat_vecs = K.local_conv1d(u_vecs, self.W, [1], [1])

        batch_size = K.shape(u_vecs)[0]
        input_num_capsule = K.shape(u_vecs)[1]
        u_hat_vecs = K.reshape(u_hat_vecs,
                               (batch_size, input_num_capsule,
                                self.num_capsule, self.dim_capsule))
        u_hat_vecs = K.permute_dimensions(u_hat_vecs, (0, 2, 1, 3))

        b = K.zeros_like(u_hat_vecs[:, :, :, 0])
        d = K.eye(self.num_capsule)
        for i in range(self.routings):
            c = softmax(b, 1)
            c = c * d
            o = K.batch_dot(c, u_hat_vecs, [2, 2])
            if K.backend() == 'theano':
                o = K.sum(o, axis=1)
            if i < self.routings - 1:
                o = K.l2_normalize(o, -1)
                b = K.batch_dot(o, u_hat_vecs, [2, 3])
                if K.backend() == 'theano':
                    b = K.sum(b, axis=1)

        return self.activation(o)
示例#32
0
def test_make_soft(_log, train_with_soft_target_stdev, _config):
    if train_with_soft_target_stdev is None:
        _config['train_with_soft_target_stdev'] = 1
    y_true = K.reshape(K.eye(512)[:129, :256], (2, 129, 256))
    y_soft = make_soft(y_true)
    f = K.function([], y_soft)
    _log.info('Output of soft:')
    f1 = f([])

    _log.info(f1[0, 0])
    _log.info(f1[-1, -1])
示例#33
0
 def __loss(y_true, y_pred):
     kernel_cs_forward, kernel_cs_backward = [], []
     for (forward, backward) in layers:
         kernel_c_forward = forward.cell.trainable_weights[1][:, rnn_units * 2:rnn_units * 3]
         kernel_c_backward = backward.cell.trainable_weights[1][:, rnn_units * 2:rnn_units * 3]
         kernel_cs_forward.append(K.reshape(kernel_c_forward, (rnn_units * rnn_units,)))
         kernel_cs_backward.append(K.reshape(kernel_c_backward, (rnn_units * rnn_units,)))
     phi_forward = K.stack(kernel_cs_forward)
     phi_backward = K.stack(kernel_cs_backward)
     loss_sim_forward = K.sum(K.square(K.dot(phi_forward, K.transpose(phi_forward)) - K.eye(len(layers))))
     loss_sim_backward = K.sum(K.square(K.dot(phi_backward, K.transpose(phi_backward)) - K.eye(len(layers))))
     loss_cat = keras.losses.categorical_crossentropy(y_true, y_pred)
     return loss_cat + lmbd * (loss_sim_forward + loss_sim_backward)
示例#34
0
 def __call__(self, x):
     xshape = K.int_shape(x)
     if self.axis is 'last':
         x = K.reshape(x, (-1, xshape[-1]))
         x /= K.sqrt(K.sum(K.square(x), axis=0, keepdims=True))
         xx = K.dot(K.transpose(x), x)
         return self.gamma * K.sum(K.log(1.0 + K.exp(self.lam * (xx - 1.0))) * (1.0 - K.eye(xshape[-1])))
     elif self.axis is 'first':
         x = K.reshape(x, (xshape[0], -1))
         x /= K.sqrt(K.sum(K.square(x), axis=1, keepdims=True))
         xx = K.dot(x, K.transpose(x))
         return self.gamma * K.sum(K.log(1.0 + K.exp(self.lam * (xx - 1.0))) * (1.0 - K.eye(xshape[0])))