def test_validate_callbacks_predefined_callbacks(self): supported_predefined_callbacks = [ callbacks.TensorBoard(), callbacks.CSVLogger(filename='./log.csv'), callbacks.EarlyStopping(), callbacks.ModelCheckpoint(filepath='./checkpoint'), callbacks.TerminateOnNaN(), callbacks.ProgbarLogger(), callbacks.History(), callbacks.RemoteMonitor() ] distributed_training_utils_v1.validate_callbacks( supported_predefined_callbacks, adam.Adam()) unsupported_predefined_callbacks = [ callbacks.ReduceLROnPlateau(), callbacks.LearningRateScheduler(schedule=lambda epoch: 0.001) ] for callback in unsupported_predefined_callbacks: with self.assertRaisesRegex( ValueError, 'You must specify a Keras Optimizer V2'): distributed_training_utils_v1.validate_callbacks( [callback], tf.compat.v1.train.AdamOptimizer())
def fit(self, model, x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0., validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None, validation_freq=1, **kwargs): """Fit loop for Distribution Strategies.""" dist_utils.validate_callbacks(input_callbacks=callbacks, optimizer=model.optimizer) dist_utils.validate_inputs(x, y) batch_size, steps_per_epoch = dist_utils.process_batch_and_step_size( model._distribution_strategy, x, batch_size, steps_per_epoch, ModeKeys.TRAIN, validation_split=validation_split) batch_size = model._validate_or_infer_batch_size( batch_size, steps_per_epoch, x) dataset = model._distribution_standardize_user_data( x, y, sample_weight=sample_weight, class_weight=class_weight, batch_size=batch_size, validation_split=validation_split, shuffle=shuffle, epochs=epochs) if not dist_utils.is_distributing_by_cloning(model): with model._distribution_strategy.scope(): (dataset, _, _) = model._standardize_user_data( dataset, sample_weight=sample_weight, class_weight=class_weight, batch_size=batch_size, validation_split=validation_split, shuffle=shuffle) val_dataset = None if validation_data: val_x, val_y, val_sample_weights = ( training_utils_v1.unpack_validation_data(validation_data)) dist_utils.validate_inputs(val_x, val_y) _, validation_steps = dist_utils.process_batch_and_step_size( model._distribution_strategy, val_x, batch_size, validation_steps, ModeKeys.TEST) val_dataset = model._distribution_standardize_user_data( val_x, val_y, sample_weight=val_sample_weights, class_weight=None, batch_size=batch_size, validation_split=validation_split, shuffle=shuffle, allow_partial_batch=True) elif validation_split: raise ValueError('validation_split argument is not supported with ' 'distribution strategies.') if dist_utils_v2.is_tpu_strategy(model._distribution_strategy): steps_per_epoch = training_utils_v1.infer_steps_for_dataset( model, dataset, steps_per_epoch, epochs, steps_name='steps_per_epoch') if steps_per_epoch is None: raise ValueError( 'Number of steps could not be inferred from the data, ' 'please pass the steps_per_epoch argument.') if not tf.executing_eagerly(): # Run TPU training in a custom loop in graph mode. return experimental_tpu_fit_loop( model, dataset, epochs=epochs, verbose=verbose, callbacks=callbacks, val_dataset=val_dataset, initial_epoch=initial_epoch, steps_per_epoch=steps_per_epoch, validation_steps=validation_steps, validation_freq=validation_freq) return training_arrays_v1.fit_loop(model, dataset, batch_size=batch_size, epochs=epochs, verbose=verbose, callbacks=callbacks, val_inputs=val_dataset, shuffle=shuffle, initial_epoch=initial_epoch, steps_per_epoch=steps_per_epoch, validation_steps=validation_steps, validation_freq=validation_freq, steps_name='steps_per_epoch')