def experimental_tpu_fit_loop(model,
                              dataset,
                              epochs=100,
                              verbose=1,
                              callbacks=None,
                              initial_epoch=0,
                              steps_per_epoch=None,
                              val_dataset=None,
                              validation_steps=None,
                              validation_freq=1):
    """Fit loop for training with TPU tf.distribute.Strategy.

  Args:
      model: Keras Model instance.
      dataset: Dataset that returns inputs and targets
      epochs: Number of times to iterate over the data
      verbose: Integer, Verbosity mode, 0, 1 or 2
      callbacks: List of callbacks to be called during training
      initial_epoch: Epoch at which to start training
          (useful for resuming a previous training run)
      steps_per_epoch: Total number of steps (batches of samples)
          before declaring one epoch finished and starting the
          next epoch. Ignored with the default value of `None`.
      val_dataset: Dataset for validation data.
      validation_steps: Number of steps to run validation for
          (only if doing validation from data tensors).
          Ignored with the default value of `None`.
      validation_freq: Only relevant if validation data is provided. Integer or
          `collections.abc.Container` instance (e.g. list, tuple, etc.). If an
          integer, specifies how many training epochs to run before a new
          validation run is performed, e.g. `validation_freq=2` runs
          validation every 2 epochs. If a Container, specifies the epochs on
          which to run validation, e.g. `validation_freq=[1, 2, 10]` runs
          validation at the end of the 1st, 2nd, and 10th epochs.

  Returns:
      Returns `None`.

  Raises:
      ValueError: in case of invalid arguments.
  """
    mode = ModeKeys.TRAIN

    current_strategy = model._distribution_strategy
    iteration_value = min(steps_per_epoch,
                          current_strategy.extended.steps_per_run)
    steps_per_run = K.variable(value=iteration_value,
                               dtype='int32',
                               name='steps_per_run')

    # TODO(fchollet): add support for `steps_per_epoch=None` in TPU loops.
    iterator = dist_utils.get_iterator(dataset, current_strategy)

    scope = dist_utils.distributed_scope(strategy=current_strategy,
                                         learning_phase=1)
    scope.__enter__()

    out_labels = model.metrics_names or []

    step_fn = _make_train_step_fn(model, ModeKeys.TRAIN, current_strategy,
                                  out_labels)

    # Add initial dummy values for loss and other metric tensors.
    initial_loop_values = {}
    initial_loop_values['loss'] = tf.constant(1e7)
    for m in model._get_training_eval_metrics():
        tensor = m.result()
        initial_loop_values[m.name] = tf.zeros(tensor.shape, tensor.dtype)

    ctx = current_strategy.extended.experimental_run_steps_on_iterator(
        step_fn,
        iterator,
        iterations=steps_per_run,
        initial_loop_values=initial_loop_values)
    train_op = ctx.run_op
    output_tensors = ctx.last_step_outputs

    do_validation = bool(validation_steps)

    if model._compile_distribution:
        dist_utils._copy_weights_to_distributed_model(model, mode)

    callbacks = cbks.configure_callbacks(callbacks,
                                         model,
                                         do_validation=do_validation,
                                         epochs=epochs,
                                         steps_per_epoch=steps_per_epoch,
                                         verbose=verbose,
                                         count_mode='steps',
                                         mode=mode)

    # Calculate the steps each time on the device.
    steps_to_run = (
        [current_strategy.extended.steps_per_run] *
        (steps_per_epoch // current_strategy.extended.steps_per_run))
    if steps_per_epoch % current_strategy.extended.steps_per_run:
        steps_to_run.append(steps_per_epoch %
                            current_strategy.extended.steps_per_run)
    target_steps = len(steps_to_run)

    callbacks._call_begin_hook(mode)

    initial_epoch = model._maybe_load_initial_epoch_from_ckpt(
        initial_epoch, mode)

    for epoch in range(initial_epoch, epochs):
        dist_utils._reset_metrics(model)
        callbacks.on_epoch_begin(epoch)
        epoch_logs = {}
        step_index = 0
        prev_step_count = None
        current_step = 0
        while current_step < target_steps:
            step_count = steps_to_run[current_step]
            batch_logs = {
                'batch': step_index,
                'size': 1,
                'num_steps': step_count
            }
            callbacks._call_batch_hook(mode, 'begin', step_index, batch_logs)
            if prev_step_count is None or step_count != prev_step_count:
                K.get_session().run(steps_per_run.assign(step_count))
                prev_step_count = step_count
            try:
                _, outputs = K.batch_get_value([train_op, output_tensors])
            except tf.errors.OutOfRangeError:
                logging.warning(
                    'Your dataset iterator ran out of data; '
                    'interrupting training. Make sure that your dataset '
                    'can generate at least `steps_per_epoch * epochs` '
                    'batches (in this case, %d batches).' % steps_per_epoch *
                    epochs)
                break

            batch_logs.update(outputs)
            callbacks._call_batch_hook(mode, 'end', step_index, batch_logs)
            step_index = step_index + step_count
            current_step += 1

            if callbacks.model.stop_training:
                break

        if (do_validation and training_utils_v1.should_run_validation(
                validation_freq, epoch)):
            logging.info('Running validation at fit epoch: %s', epoch)

            if model._compile_distribution:
                # Since we create a new clone from the original model we need to copy
                # the weights back to the original model before we can run validation.
                dist_utils._copy_weights_to_original_model(
                    model, ModeKeys.TRAIN)

            val_outs = experimental_tpu_test_loop(  # pylint: disable=undefined-variable
                model,
                val_dataset,
                steps=validation_steps,
                verbose=verbose,
                callbacks=callbacks)
            if not isinstance(val_outs, list):
                val_outs = [val_outs]
            # Same labels assumed.
            for label, val_out in zip(out_labels, val_outs):
                epoch_logs['val_' + label] = val_out

        callbacks.on_epoch_end(epoch, epoch_logs)
        if callbacks.model.stop_training:
            break
    model._successful_loop_finish = True
    callbacks._call_end_hook(mode)

    if model._compile_distribution:
        # Copy the weights back from the replicated model to the original model.
        dist_utils._copy_weights_to_original_model(model, ModeKeys.TRAIN)
    scope.__exit__(None, None, None)
    return model.history
示例#2
0
def model_iteration(model,
                    inputs,
                    targets=None,
                    sample_weights=None,
                    batch_size=None,
                    epochs=1,
                    verbose=1,
                    callbacks=None,
                    val_inputs=None,
                    val_targets=None,
                    val_sample_weights=None,
                    shuffle=True,
                    initial_epoch=0,
                    steps_per_epoch=None,
                    validation_steps=None,
                    validation_freq=1,
                    mode=ModeKeys.TRAIN,
                    validation_in_fit=False,
                    prepared_feed_values_from_dataset=False,
                    steps_name="steps",
                    **kwargs):
    """Loop function for arrays of data with modes TRAIN/TEST/PREDICT.

    Args:
        model: Keras Model instance.
        inputs: Either a list or dictionary of arrays, or a dataset instance.
        targets: List/dictionary of input arrays.
        sample_weights: Optional list of sample weight arrays.
        batch_size: Integer batch size or None if unknown.
        epochs: Number of times to iterate over the data
        verbose: 0, 1, or 2. Verbosity mode.
          0 = silent, 1 = progress bar, 2 = one line per epoch.
          Note that the progress bar is not particularly useful when
          logged to a file, so verbose=2 is recommended when not running
          interactively (eg, in a production environment).
        callbacks: List of callbacks to be called during training
        val_inputs: Either a list or dictionary of arrays, or a dataset
          instance.
        val_targets: List/dictionary of target arrays.
        val_sample_weights: Optional list of sample weight arrays.
        shuffle: Whether to shuffle the data at the beginning of each epoch
          concatenation of list the display names of the outputs of `f` and the
          list of display names of the outputs of `f_val`.
        initial_epoch: Epoch at which to start training (useful for resuming a
          previous training run)
        steps_per_epoch: Total number of steps (batches of samples) before
          declaring one epoch finished and starting the next epoch. Ignored with
          the default value of `None`.
        validation_steps: Number of steps to run validation for (only if doing
          validation from data tensors). Ignored with the default value of
          `None`.
        validation_freq: Only relevant if validation data is provided. Integer
          or `collections.abc.Container` instance (e.g. list, tuple, etc.). If
          an integer, specifies how many training epochs to run before a new
          validation run is performed, e.g. `validation_freq=2` runs validation
          every 2 epochs. If a Container, specifies the epochs on which to run
          validation, e.g. `validation_freq=[1, 2, 10]` runs validation at the
          end of the 1st, 2nd, and 10th epochs.
        mode: One of ModeKeys.TRAIN/ModeKeys.TEST/ModeKeys.PREDICT.
        validation_in_fit: if true, then this method is invoked from within
          training iteration (for validation). In the case where `val_inputs` is
          a dataset, this flag indicates that its iterator and feed values are
          already created so should properly reuse resources.
        prepared_feed_values_from_dataset: if True, `inputs` is a list of feed
          tensors returned from `_prepare_feed_values` call on the validation
          dataset, so do not call it again on `inputs`. Should only be used for
          inline validation (i.e., only if `validation_in_fit` is also True).
        steps_name: The string name of the steps argument, either `steps`,
          `validation_steps`, or `steps_per_epoch`. Only used for error message
          formatting.
        **kwargs: Additional arguments for backwards compatibility.

    Returns:
        - In TRAIN mode: `History` object.
        - In TEST mode: Evaluation metrics.
        - In PREDICT mode: Outputs of the Model called on inputs.

    Raises:
        ValueError: in case of invalid arguments.
    """
    # Backwards compatibility.
    if "steps" in kwargs:
        steps_per_epoch = kwargs.pop("steps")
    if kwargs:
        raise TypeError("Unknown arguments: %s" % (kwargs, ))

    # In case we were passed a dataset, we extract symbolic tensors from it.
    reset_dataset_after_each_epoch = False
    input_iterator = None
    is_dataset = isinstance(inputs,
                            (tf.compat.v1.data.Dataset, tf.data.Dataset))
    # TODO(fchollet): consider moving `steps_per_epoch` inference to
    # _standardize_user_data and set reset_dataset_after_each_epoch as an
    # attribute on the dataset instance.
    if is_dataset:
        if steps_per_epoch is None:
            reset_dataset_after_each_epoch = True
            steps_per_epoch = training_utils_v1.infer_steps_for_dataset(
                model,
                inputs,
                steps_per_epoch,
                epochs=epochs,
                steps_name=steps_name,
            )
        input_iterator = _get_iterator(inputs, model._distribution_strategy)

    # Enter tf.distribute.Strategy scope.
    if model._distribution_strategy:
        scope = distributed_training_utils_v1.distributed_scope(
            strategy=model._distribution_strategy,
            learning_phase=(1 if mode == ModeKeys.TRAIN else 0),
        )
        scope.__enter__()

    use_steps = is_dataset or steps_per_epoch is not None
    do_validation = val_inputs is not None

    # Prepare input data.
    inputs = input_iterator or inputs
    if validation_in_fit and prepared_feed_values_from_dataset:
        # When invoking validation in training loop, avoid creating iterator and
        # list of feed values for the same validation dataset multiple times
        # (which essentially would call `iterator.get_next()` that slows down
        # execution and leads to OOM errors eventually.
        ins = inputs
    else:
        ins = _prepare_feed_values(model, inputs, targets, sample_weights,
                                   mode)
        # `ins` is a function when a distribute strategy is used in Eager mode.
        # In that case `is_dataset` is True.  The code branches that have
        # requirements about the type of `ins` do not trigger in the distributed
        # case.

    if not is_dataset:
        num_samples_or_steps = _get_num_samples_or_steps(
            ins, batch_size, steps_per_epoch)
    else:
        num_samples_or_steps = steps_per_epoch

    # Update sample_weight_mode of the model if sample_weights is specified by
    # the user. We need to call this function after we have a handle on the
    # inputs (both numpy arrays and datasets) in order to determine if the user
    # has specified sample_weights.
    _update_sample_weight_mode(model, mode, ins)

    # Get step function and loop type. As part of building the execution
    # function we recompile the metrics based on the updated
    # sample_weight_mode value.
    f = _make_execution_function(model, mode)

    # Prepare validation data. Hold references to the iterator and the input
    # list to properly reinitialize and reuse in multiple validation passes.
    val_iterator = None
    if isinstance(val_inputs, (tf.compat.v1.data.Dataset, tf.data.Dataset)):
        if validation_steps is None:
            # Because we pass an iterator feed instead of a Dataset to the eval
            # model_iteration() call, it will not trigger the dataset-input path
            # that determines the number of steps required. To avoid this issue,
            # set validation_steps here if validation_steps is None.
            validation_steps = training_utils_v1.infer_steps_for_dataset(
                model,
                val_inputs,
                validation_steps,
                epochs=epochs,
                steps_name="validation_steps",
            )
        val_iterator = _get_iterator(val_inputs, model._distribution_strategy)
        val_inputs = _prepare_feed_values(model, val_iterator, val_targets,
                                          val_sample_weights, ModeKeys.TEST)
        # Get num steps for printing.
        val_samples_or_steps = validation_steps
    else:
        # Get num samples for printing.
        val_samples_or_steps = (val_inputs
                                and tf.nest.flatten(val_inputs)[0].shape[0]
                                or None)

    if mode == ModeKeys.TRAIN and verbose:
        _print_train_info(num_samples_or_steps, val_samples_or_steps,
                          is_dataset)

    # Configure callbacks.
    count_mode = "steps" if use_steps else "samples"
    callbacks = cbks.configure_callbacks(
        callbacks,
        model,
        do_validation=do_validation,
        batch_size=batch_size,
        epochs=epochs,
        steps_per_epoch=steps_per_epoch,
        samples=num_samples_or_steps,
        count_mode=count_mode,
        verbose=verbose,
        mode=mode,
    )

    # Find beforehand arrays that need sparse-to-dense conversion.
    if issparse is not None and not use_steps:
        indices_for_conversion_to_dense = []
        feed = _get_model_feed(model, mode)
        for i, (input_data, feed_tensor) in enumerate(zip(ins, feed)):
            if issparse(input_data) and not backend.is_sparse(feed_tensor):
                indices_for_conversion_to_dense.append(i)

    # Select aggregation method.
    if mode == ModeKeys.PREDICT:
        aggregator = training_utils_v1.OutputsAggregator(
            use_steps,
            num_samples=None if steps_per_epoch else num_samples_or_steps,
            steps=steps_per_epoch,
        )
    else:
        aggregator = training_utils_v1.MetricsAggregator(
            use_steps,
            num_samples=None if steps_per_epoch else num_samples_or_steps,
            steps=steps_per_epoch,
        )

    if model._compile_distribution:
        distributed_training_utils_v1._copy_weights_to_distributed_model(
            model, mode)

    callbacks.model.stop_training = False
    callbacks._call_begin_hook(mode)

    initial_epoch = model._maybe_load_initial_epoch_from_ckpt(
        initial_epoch, mode)

    for epoch in range(initial_epoch, epochs):
        if callbacks.model.stop_training:
            break

        # Setup work for each epoch
        epoch_logs = {}
        if mode != ModeKeys.PREDICT:
            # Collecting and resetting metrics has non-zero cost and will
            # needlessly slow down model.predict.
            model.reset_metrics()
        if mode == ModeKeys.TRAIN:
            callbacks.on_epoch_begin(epoch, epoch_logs)

        if use_steps:
            # Step-wise loop.
            if steps_per_epoch is None:
                # Loop over dataset until `OutOfRangeError` is raised.
                target_steps = np.inf
            else:
                # Loop over dataset for the specified number of steps.
                target_steps = steps_per_epoch

            step = 0
            while step < target_steps:
                batch_logs = {"batch": step, "size": 1}
                callbacks._call_batch_hook(mode, "begin", step, batch_logs)

                # Get outputs.
                try:
                    # `ins` can be callable in tf.distribute.Strategy + eager
                    # case.
                    if not callable(ins) or (
                            model._distribution_strategy
                            and not distributed_training_utils_v1.
                            is_distributing_by_cloning(  # noqa: E501
                                model)):
                        actual_inputs = ins
                    else:
                        actual_inputs = ins()
                    batch_outs = f(actual_inputs)
                except tf.errors.OutOfRangeError:
                    if is_dataset:
                        # The dataset passed by the user ran out of batches.
                        # Now we know the cardinality of the dataset.  If
                        # steps_per_epoch was specified, then running out of
                        # data is unexpected, so we stop training and inform the
                        # user.
                        if steps_per_epoch:
                            callbacks.model.stop_training = True
                            logging.warning(
                                "Your dataset ran out of data; interrupting "
                                "training. Make sure that your dataset can "
                                "generate at least `%s * epochs` batches (in "
                                "this case, %d batches). You may need to use "
                                "the repeat() function when building your "
                                "dataset." %
                                (steps_name, steps_per_epoch * epochs))
                        elif step > 0:
                            steps_per_epoch = step
                            aggregator.steps = steps_per_epoch
                    else:
                        # We ran out of batches while the user passed an
                        # iterator (legacy).
                        callbacks.model.stop_training = True
                        logging.warning(
                            "Your dataset iterator ran out of data; "
                            "interrupting training. Make sure that your "
                            "iterator can generate at least `%s * epochs` "
                            "batches (in this case, %d batches). You may need "
                            "to use the repeat() function when building your "
                            "dataset." %
                            (steps_name, steps_per_epoch * epochs))
                    break

                if not isinstance(batch_outs, list):
                    batch_outs = [batch_outs]

                if model._distribution_strategy:
                    batch_outs = distributed_training_utils_v1._per_replica_aggregate_batch(  # noqa: E501
                        model._distribution_strategy, batch_outs, model, mode)

                # Aggregate results.
                if step == 0:
                    aggregator.create(batch_outs)
                aggregator.aggregate(batch_outs)

                # Callbacks batch end.
                batch_logs = cbks.make_logs(model, batch_logs, batch_outs,
                                            mode)
                callbacks._call_batch_hook(mode, "end", step, batch_logs)
                step += 1

                if callbacks.model.stop_training:
                    break
        else:
            # Sample-wise loop.
            index_array = np.arange(num_samples_or_steps)
            if shuffle == "batch":
                index_array = training_utils_v1.batch_shuffle(
                    index_array, batch_size)
            elif shuffle:
                np.random.shuffle(index_array)
            batches = make_batches(num_samples_or_steps, batch_size)
            for batch_index, (batch_start, batch_end) in enumerate(batches):
                batch_ids = index_array[batch_start:batch_end]
                # Slice into a batch.
                if len(batches) == 1:
                    # If we only have one batch, do not slice. This takes care
                    # of composite tensors in non-Dataset modes; we currently
                    # don't support slicing them.
                    # TODO(b/133517906): Add slicing support.
                    ins_batch = ins
                else:
                    try:
                        if ins and isinstance(ins[-1], int):
                            # Do not slice the training phase flag.
                            ins_batch = slice_arrays(ins[:-1],
                                                     batch_ids) + [ins[-1]]
                        else:
                            ins_batch = slice_arrays(ins, batch_ids)
                    except TypeError:
                        raise TypeError("TypeError while preparing batch. "
                                        "If using HDF5 input data, "
                                        'pass shuffle="batch".')

                # Sparse to dense conversion.
                if issparse is not None:
                    for i in indices_for_conversion_to_dense:
                        ins_batch[i] = ins_batch[i].toarray()

                # Callbacks batch_begin.
                batch_logs = {"batch": batch_index, "size": len(batch_ids)}
                callbacks._call_batch_hook(mode, "begin", batch_index,
                                           batch_logs)

                # Get outputs.
                batch_outs = f(ins_batch)
                if not isinstance(batch_outs, list):
                    batch_outs = [batch_outs]

                # Aggregate results.
                if batch_index == 0:
                    aggregator.create(batch_outs)
                aggregator.aggregate(batch_outs, batch_start, batch_end)

                # Callbacks batch end.
                batch_logs = cbks.make_logs(model, batch_logs, batch_outs,
                                            mode)
                callbacks._call_batch_hook(mode, "end", batch_index,
                                           batch_logs)

                if callbacks.model.stop_training:
                    break

        aggregator.finalize()
        results = aggregator.results
        epoch_logs = cbks.make_logs(model, epoch_logs, results, mode)
        if len(results) == 1:
            results = results[0]

        # Run the test loop every `validation_freq` epochs during training.
        if (do_validation and training_utils_v1.should_run_validation(
                validation_freq, epoch) and not callbacks.model.stop_training):

            if model._compile_distribution:
                # Since we create a new clone from the original model we need to
                # copy the weights back to the original model before we can run
                # validation.
                distributed_training_utils_v1._copy_weights_to_original_model(
                    model, ModeKeys.TRAIN)

            val_results = model_iteration(
                model,
                val_inputs,
                targets=val_targets,
                sample_weights=val_sample_weights,
                batch_size=batch_size,
                steps_per_epoch=validation_steps,
                callbacks=callbacks,
                verbose=0,
                mode=ModeKeys.TEST,
                validation_in_fit=True,
                prepared_feed_values_from_dataset=(val_iterator is not None),
                steps_name="validation_steps",
            )
            if not isinstance(val_results, list):
                val_results = [val_results]
            epoch_logs = cbks.make_logs(model,
                                        epoch_logs,
                                        val_results,
                                        mode,
                                        prefix="val_")
            if val_iterator and epoch < epochs - 1:
                _reinitialize_iterator(val_iterator,
                                       model._distribution_strategy)

        if mode == ModeKeys.TRAIN:
            # Epochs only apply to `fit`.
            callbacks.on_epoch_end(epoch, epoch_logs)

        # Reinitialize dataset iterator for the next epoch.
        if reset_dataset_after_each_epoch and epoch < epochs - 1:
            _reinitialize_iterator(input_iterator,
                                   model._distribution_strategy)

    model._successful_loop_finish = True
    callbacks._call_end_hook(mode)

    if model._distribution_strategy:
        if model._compile_distribution:
            # TODO(priyag, psv): Copy back metrics to the original model as
            # well?
            distributed_training_utils_v1._copy_weights_to_original_model(
                model, mode)
        scope.__exit__(None, None, None)

    if mode == ModeKeys.TRAIN:
        return model.history
    return results
示例#3
0
def model_iteration(model,
                    data,
                    steps_per_epoch=None,
                    epochs=1,
                    verbose=1,
                    callbacks=None,
                    validation_data=None,
                    validation_steps=None,
                    validation_freq=1,
                    class_weight=None,
                    max_queue_size=10,
                    workers=1,
                    use_multiprocessing=False,
                    shuffle=False,
                    initial_epoch=0,
                    mode=ModeKeys.TRAIN,
                    batch_size=None,
                    steps_name='steps',
                    **kwargs):
    """Loop function for arrays of data with modes TRAIN/TEST/PREDICT.

  Arguments:
      model: Keras Model instance.
      data: Either a tuple of NumPy/Tensor inputs (i.e. `(x,)` or `(x, y)` or
        `(x, y, sample_weights)`) or a generator or
        `keras.utils.data_utils.Sequence` object or Eager Iterator or Dataset.
      steps_per_epoch: Total number of steps (batches of samples) before
        declaring one epoch finished and starting the next epoch. Ignored with
        the default value of `None`.
      epochs: Number of times to iterate over the data.
      verbose: 0, 1, or 2. Verbosity mode.
        0 = silent, 1 = progress bar, 2 = one line per epoch.
        Note that the progress bar is not particularly useful when
        logged to a file, so verbose=2 is recommended when not running
        interactively (eg, in a production environment).
      callbacks: List of callbacks to be called during training.
      validation_data: Either a tuple of NumPy/Tensor inputs (i.e. `(x,)` or
        `(x, y)` or `(x, y, sample_weights)`) or a generator or
        `keras.utils.data_utils.Sequence` object or Eager Iterator or Dataset.
      validation_steps: Total number of steps (batches of samples) before
        declaring validation finished.
      validation_freq: Only relevant if validation data is provided. Integer or
        `collections.abc.Container` instance (e.g. list, tuple, etc.). If an
        integer, specifies how many training epochs to run before a new
        validation run is performed, e.g. `validation_freq=2` runs
        validation every 2 epochs. If a Container, specifies the epochs on
        which to run validation, e.g. `validation_freq=[1, 2, 10]` runs
        validation at the end of the 1st, 2nd, and 10th epochs.
      class_weight: Dictionary mapping class indices to a weight for the class.
      max_queue_size: Integer. Maximum size for the generator queue. If
        unspecified, `max_queue_size` will default to 10.
      workers: Integer. Maximum number of processes to spin up when using
        process-based threading. If unspecified, `workers` will default to 1. If
        0, will execute the generator on the main thread.
      use_multiprocessing: Boolean. If `True`, use process-based threading. If
        unspecified, `use_multiprocessing` will default to `False`. Note that
        because this implementation relies on multiprocessing, you should not
        pass non-picklable arguments to the generator as they can't be passed
        easily to children processes.
      shuffle: Boolean. Whether to shuffle the order of the batches at the
        beginning of each epoch. Only used with instances of `Sequence`
        (`keras.utils.Sequence`). Has no effect when `steps_per_epoch` is not
        `None`.
      initial_epoch: Epoch at which to start training (useful for resuming a
        previous training run).
      mode: One of ModeKeys.TRAIN/ModeKeys.TEST/ModeKeys.PREDICT.
      batch_size: Integer batch size or None if unknown. Will only be used if
        `data` is in NumPy/Tensor format.
      steps_name: The string name of the steps argument, either `steps`,
        `validation_steps`, or `steps_per_epoch`. Only used for error message
        formatting.
      **kwargs: Additional arguments for backwards compatibility. `steps` is
        accepted as an alias for `steps_per_epoch`.

  Returns:
      - In TRAIN mode: `History` object.
      - In TEST mode: Evaluation metrics.
      - In PREDICT mode: Outputs of the Model called on inputs.

  Raises:
      ValueError: in case of invalid arguments.
  """
    if 'steps' in kwargs:
        steps_per_epoch = kwargs['steps']

    # Determine the number of steps per epoch and whether we should reset the
    # dataset at the end of each epoch.
    reset_dataset_after_each_epoch = False
    original_dataset = None
    is_dataset = isinstance(data, (tf.data.Dataset, tf.compat.v1.data.Dataset))
    if is_dataset:
        original_dataset = data
        if steps_per_epoch is None:
            reset_dataset_after_each_epoch = True
            steps_per_epoch = training_utils_v1.infer_steps_for_dataset(
                model,
                data,
                steps_per_epoch,
                epochs=epochs,
                steps_name=steps_name)

    # Convert to a format that supports `next(generator)`.
    generator, steps_per_epoch = convert_to_generator_like(
        data,
        steps_per_epoch=steps_per_epoch,
        batch_size=batch_size,
        epochs=epochs - initial_epoch,
        shuffle=shuffle)

    do_validation = validation_data is not None
    is_sequence = isinstance(generator, data_utils.Sequence)
    _validate_arguments(is_sequence, is_dataset, use_multiprocessing, workers,
                        steps_per_epoch, validation_data, validation_steps,
                        mode, kwargs)

    batch_function = _make_execution_function(model,
                                              mode,
                                              class_weight=class_weight)

    # Create the queue for the generator.
    enqueuer = None
    if not is_dataset:
        generator, enqueuer = _make_enqueued_generator(
            generator,
            workers=workers,
            use_multiprocessing=use_multiprocessing,
            max_queue_size=max_queue_size,
            shuffle=shuffle)

    num_samples_or_steps, use_steps = _get_num_samples_or_steps(
        data, steps_per_epoch)

    count_mode = 'steps' if use_steps else 'samples'
    callbacks = cbks.configure_callbacks(callbacks,
                                         model,
                                         do_validation=do_validation,
                                         epochs=epochs,
                                         steps_per_epoch=steps_per_epoch,
                                         batch_size=batch_size,
                                         samples=num_samples_or_steps,
                                         count_mode=count_mode,
                                         verbose=verbose,
                                         mode=mode)

    if mode == ModeKeys.PREDICT:
        aggregator = training_utils_v1.OutputsAggregator(True,
                                                         steps=steps_per_epoch)
    else:
        aggregator = training_utils_v1.MetricsAggregator(True,
                                                         steps=steps_per_epoch)

    should_set_learning_phase = tf.executing_eagerly() and model.run_eagerly
    if should_set_learning_phase:
        learning_phase_scope = backend.eager_learning_phase_scope(
            1 if mode == ModeKeys.TRAIN else 0)
        learning_phase_scope.__enter__()

    callbacks.model.stop_training = False
    callbacks._call_begin_hook(mode)

    initial_epoch = model._maybe_load_initial_epoch_from_ckpt(
        initial_epoch, mode)

    for epoch in range(initial_epoch, epochs):
        if callbacks.model.stop_training:
            break

        # Setup work for each epoch.
        model.reset_metrics()
        epoch_logs = {}
        if mode == ModeKeys.TRAIN:
            callbacks.on_epoch_begin(epoch, epoch_logs)

        if steps_per_epoch is None:
            # Loop over dataset until `OutOfRangeError` is raised.
            target_steps = np.inf
        else:
            # Loop over dataset for the specified number of steps.
            target_steps = steps_per_epoch

        step = 0
        while step < target_steps:
            batch_data = _get_next_batch(generator)
            if batch_data is None:
                if is_dataset:
                    # The dataset passed by the user ran out of batches.
                    # Now we know the cardinality of the dataset.
                    # If steps_per_epoch was specified, then running out of data is
                    # unexpected, so we stop training and inform the user.
                    if steps_per_epoch:
                        callbacks.model.stop_training = True
                        logging.warning(
                            'Your dataset ran out of data; interrupting training. '
                            'Make sure that your dataset can generate at least '
                            '`%s * epochs` batches (in this case, %d batches). '
                            'You may need to use the repeat() function when '
                            'building your dataset.' %
                            (steps_name, steps_per_epoch * epochs))
                    elif step > 0:
                        steps_per_epoch = step
                        aggregator.steps = steps_per_epoch
                else:
                    # We ran out of batches while the user passed an iterator (legacy).
                    callbacks.model.stop_training = True
                    logging.warning(
                        'Your dataset iterator ran out of data; '
                        'interrupting training. Make sure that your iterator '
                        'can generate at least `%s * epochs` '
                        'batches (in this case, %d batches). You may need to'
                        'use the repeat() function when building your '
                        'dataset.' % (steps_name, steps_per_epoch * epochs))
                break

            # `batch_size` used for validation data if validation
            # data is NumPy/EagerTensors.
            batch_size = int(tf.nest.flatten(batch_data)[0].shape[0])

            # Callbacks batch begin.
            batch_logs = {'batch': step, 'size': batch_size}
            callbacks._call_batch_hook(mode, 'begin', step, batch_logs)

            is_deferred = not model._is_compiled
            batch_outs = batch_function(*batch_data)
            if not isinstance(batch_outs, list):
                batch_outs = [batch_outs]

            if step == 0:
                aggregator.create(batch_outs)

                if is_deferred:
                    # Set callbacks params. We do this here when model is compiled only
                    # in the first iteration of this loop (deferred build scenario).
                    cbks.set_callback_parameters(
                        callbacks,
                        model,
                        do_validation=do_validation,
                        batch_size=batch_size,
                        epochs=epochs,
                        steps_per_epoch=steps_per_epoch,
                        samples=num_samples_or_steps,
                        verbose=verbose,
                        mode=mode)

            # Aggregate results.
            aggregator.aggregate(batch_outs)

            # Callbacks batch end.
            batch_logs = cbks.make_logs(model, batch_logs, batch_outs, mode)
            callbacks._call_batch_hook(mode, 'end', step, batch_logs)
            step += 1

            if callbacks.model.stop_training:
                break

        aggregator.finalize()
        results = aggregator.results
        epoch_logs = cbks.make_logs(model, epoch_logs, results, mode)
        if len(results) == 1:
            results = results[0]

        # Run the test loop every epoch during training.
        if (do_validation and training_utils_v1.should_run_validation(
                validation_freq, epoch) and not callbacks.model.stop_training):
            val_results = model_iteration(
                model,
                validation_data,
                steps_per_epoch=validation_steps,
                batch_size=batch_size,
                class_weight=class_weight,
                workers=workers,
                use_multiprocessing=use_multiprocessing,
                max_queue_size=max_queue_size,
                callbacks=callbacks,
                verbose=verbose,
                mode=ModeKeys.TEST,
                steps_name='validation_steps')

            if not isinstance(val_results, list):
                val_results = [val_results]
            epoch_logs = cbks.make_logs(model,
                                        epoch_logs,
                                        val_results,
                                        mode,
                                        prefix='val_')

        if mode == ModeKeys.TRAIN:
            # Epochs only apply to `fit`.
            callbacks.on_epoch_end(epoch, epoch_logs)

        # Recreate dataset iterator for the next epoch.
        if reset_dataset_after_each_epoch and epoch < epochs - 1:
            generator = tf.compat.v1.data.make_one_shot_iterator(
                original_dataset)

    model._successful_loop_finish = True
    callbacks._call_end_hook(mode)

    if enqueuer is not None:
        enqueuer.stop()

    if should_set_learning_phase:
        learning_phase_scope.__exit__(None, None, None)

    if mode == ModeKeys.TRAIN:
        return model.history
    return results