def __init__(self):
        self.model = Sequential()
        self.model.add(
            convolutional.Convolution2D(input_shape=(49, 19, 19),
                                        nb_filter=K,
                                        nb_row=5,
                                        nb_col=5,
                                        init='uniform',
                                        activation='relu',
                                        border_mode='same'))
        for i in range(2, 13):
            self.model.add(
                convolutional.Convolution2D(nb_filter=K,
                                            nb_row=3,
                                            nb_col=3,
                                            init='uniform',
                                            activation='relu',
                                            border_mode='same'))

        self.model.add(
            convolutional.Convolution2D(nb_filter=1,
                                        nb_row=1,
                                        nb_col=1,
                                        init='uniform',
                                        activation='linear',
                                        border_mode='same'))
        self.model.add(Flatten())
        self.model.add(Dense(256, init='uniform'))
        self.model.add(Dense(1, init='uniform', activation="tanh"))
示例#2
0
def make_model():
    network = Sequential()
    network.add(
        Lambda(lambda pixel: pixel / 255 - 0.5, input_shape=(160, 320, 3)))
    network.add(convolutional.Cropping2D(cropping=((70, 25), (0, 0))))
    network.add(
        convolutional.Convolution2D(24,
                                    5,
                                    5,
                                    activation='relu',
                                    subsample=(2, 2)))
    network.add(
        convolutional.Convolution2D(36,
                                    5,
                                    5,
                                    activation='relu',
                                    subsample=(2, 2)))
    network.add(
        convolutional.Convolution2D(48,
                                    5,
                                    5,
                                    activation='relu',
                                    subsample=(2, 2)))
    network.add(convolutional.Convolution2D(64, 3, 3, activation='relu'))
    network.add(convolutional.Convolution2D(64, 3, 3, activation='relu'))
    network.add(Flatten())
    network.add(Dense(100))
    network.add(Dense(50))
    network.add(Dense(10))
    network.add(Dense(1))
    return network
示例#3
0
def create_simple_model(num_classes, layer1_filters=32, layer2_filters=64):
    epochs = 5
    n_conv = 2
    model = models.Sequential()

    # First layer
    model.add(conv.ZeroPadding2D(
        (1, 1),
        input_shape=(1, IMG_COLS, IMG_ROWS),
    ))
    model.add(
        conv.Convolution2D(layer1_filters, n_conv, n_conv, activation="relu"))
    model.add(conv.MaxPooling2D(strides=(2, 2)))

    # Second layer
    model.add(conv.ZeroPadding2D((1, 1)))
    model.add(
        conv.Convolution2D(layer2_filters, n_conv, n_conv, activation="relu"))
    model.add(conv.MaxPooling2D(strides=(2, 2)))

    model.add(core.Flatten())
    model.add(core.Dropout(0.2))
    model.add(core.Dense(128, activation="relu"))
    model.add(core.Dense(num_classes, activation="softmax"))

    model.summary()
    model.compile(loss="categorical_crossentropy",
                  optimizer="adadelta",
                  metrics=["accuracy"])

    return model, epochs
示例#4
0
def Dave_v3(input_tensor=None, load_weights=False):
    model = models.Sequential()
    model.add(
        convolutional.Convolution2D(16,
                                    3,
                                    3,
                                    input_shape=(32, 128, 3),
                                    activation='relu'))
    model.add(pooling.MaxPooling2D(pool_size=(2, 2)))
    model.add(convolutional.Convolution2D(32, 3, 3, activation='relu'))
    model.add(pooling.MaxPooling2D(pool_size=(2, 2)))
    model.add(convolutional.Convolution2D(64, 3, 3, activation='relu'))
    model.add(pooling.MaxPooling2D(pool_size=(2, 2)))
    model.add(core.Flatten())
    model.add(core.Dense(500, activation='relu'))
    #model.add(core.Dropout(.5))
    model.add(core.Dense(100, activation='relu'))
    #model.add(core.Dropout(.25))
    model.add(core.Dense(20, activation='relu'))
    model.add(core.Dense(1))
    model.add(
        Lambda(One_to_radius, output_shape=atan_layer_shape,
               name="prediction"))
    if load_weights:
        model.load_weights('./models/dave3/dave3.h5')
    model.compile(optimizer=optimizers.Adam(lr=1e-04),
                  loss='mean_squared_error')
    return model
示例#5
0
def test_convolution_2d_dim_ordering():
    nb_filter = 4
    nb_row = 3
    nb_col = 2
    stack_size = 3

    np.random.seed(1337)
    weights = [
        np.random.random((nb_filter, stack_size, nb_row, nb_col)),
        np.random.random(nb_filter)
    ]
    input = np.random.random((1, stack_size, 10, 10))

    layer = convolutional.Convolution2D(nb_filter,
                                        nb_row,
                                        nb_col,
                                        weights=weights,
                                        input_shape=input.shape[1:],
                                        dim_ordering='th')
    layer.input = K.variable(input)
    out_th = K.eval(layer.get_output(False))

    input = np.transpose(input, (0, 2, 3, 1))
    weights[0] = np.transpose(weights[0], (2, 3, 1, 0))
    layer = convolutional.Convolution2D(nb_filter,
                                        nb_row,
                                        nb_col,
                                        weights=weights,
                                        input_shape=input.shape[1:],
                                        dim_ordering='tf')
    layer.input = K.variable(input)
    out_tf = K.eval(layer.get_output(False))

    assert_allclose(out_tf, np.transpose(out_th, (0, 2, 3, 1)), atol=1e-05)
示例#6
0
    def create_network(**kwargs):

        model = Sequential()

        model.add(
            convolutional.Convolution2D(input_shape=(49, 19, 19),
                                        nb_filter=K,
                                        nb_row=5,
                                        nb_col=5,
                                        init='uniform',
                                        activation='relu',
                                        border_mode='same'))

        for i in range(2, 13):
            model.add(
                convolutional.Convolution2D(nb_filter=K,
                                            nb_row=3,
                                            nb_col=3,
                                            init='uniform',
                                            activation='relu',
                                            border_mode='same'))

        model.add(
            convolutional.Convolution2D(nb_filter=1,
                                        nb_row=1,
                                        nb_col=1,
                                        init='uniform',
                                        activation='linear',
                                        border_mode='same'))

        model.add(Flatten())
        model.add(Dense(256, init='uniform'))
        model.add(Dense(1, init='uniform', activation="tanh"))

        return model
示例#7
0
    def __init__(self, img_size, nb_classes):
        batch_size = 128
        img_rows, img_cols = img_size

        nb_filters_1 = 32  # 64
        nb_filters_2 = 64  # 128
        nb_filters_3 = 128  # 256
        nb_conv = 3


        cnn = models.Sequential()

        cnn.add(conv.Convolution2D(nb_filters_1, nb_conv, nb_conv, activation="relu", input_shape=(img_rows, img_cols, 1),
                                   border_mode='same'))
        cnn.add(conv.Convolution2D(nb_filters_1, nb_conv, nb_conv, activation="relu", border_mode='same'))
        cnn.add(conv.MaxPooling2D(strides=(2, 2)))

        cnn.add(conv.Convolution2D(nb_filters_2, nb_conv, nb_conv, activation="relu", border_mode='same'))
        cnn.add(conv.Convolution2D(nb_filters_2, nb_conv, nb_conv, activation="relu", border_mode='same'))
        cnn.add(conv.MaxPooling2D(strides=(2, 2)))

        # cnn.add(conv.Convolution2D(nb_filters_3, nb_conv, nb_conv, activation="relu", border_mode='same'))
        # cnn.add(conv.Convolution2D(nb_filters_3, nb_conv, nb_conv, activation="relu", border_mode='same'))
        # cnn.add(conv.Convolution2D(nb_filters_3, nb_conv, nb_conv, activation="relu", border_mode='same'))
        # cnn.add(conv.Convolution2D(nb_filters_3, nb_conv, nb_conv, activation="relu", border_mode='same'))
        # cnn.add(conv.MaxPooling2D(strides=(2,2)))

        cnn.add(core.Flatten())
        cnn.add(core.Dropout(0.2))
        cnn.add(core.Dense(128, activation="relu"))  # 4096
        cnn.add(core.Dense(nb_classes, activation="softmax"))

        cnn.summary()
        cnn.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
        self.cnn = cnn
示例#8
0
def main(n_filters,
         conv_size,
         pool_size,
         dropout,
         patch_size,
         n_astro=7,
         out_path=None):
    # Imports must be in the function, or whenever we import this module, Keras
    # will dump to stdout.
    import keras.layers.core as core
    from keras.layers import Input, Dense, Concatenate
    import keras.layers.convolutional as conv
    import keras.layers.merge
    from keras.models import Model

    im_in = Input(shape=(1, patch_size, patch_size))
    astro_in = Input(shape=(n_astro, ))
    # 1 x 32 x 32
    conv1 = conv.Convolution2D(filters=n_filters,
                               kernel_size=(conv_size, conv_size),
                               border_mode='valid',
                               activation='relu',
                               data_format='channels_first')(im_in)
    # 32 x 28 x 28
    pool1 = conv.MaxPooling2D(pool_size=(pool_size, pool_size),
                              data_format='channels_first')(conv1)
    # 32 x 14 x 14
    conv2 = conv.Convolution2D(filters=n_filters,
                               kernel_size=(conv_size, conv_size),
                               border_mode='valid',
                               activation='relu',
                               data_format='channels_first')(pool1)
    # 32 x 10 x 10
    pool2 = conv.MaxPooling2D(pool_size=(pool_size, pool_size),
                              data_format='channels_first')(conv2)
    # 32 x 5 x 5
    conv3 = conv.Convolution2D(filters=n_filters,
                               kernel_size=(conv_size, conv_size),
                               border_mode='valid',
                               activation='relu',
                               data_format='channels_first')(pool2)
    # 32 x 1 x 1
    dropout = core.Dropout(dropout)(conv3)
    flatten = core.Flatten()(dropout)
    conc = Concatenate()([astro_in, flatten])
    lr = Dense(1, activation='sigmoid')(conc)

    model = Model(inputs=[astro_in, im_in], outputs=[lr])
    model.compile(loss='binary_crossentropy', optimizer='adadelta')

    model_json = model.to_json()

    if out_path is not None:
        with open(out_path, 'w') as f:
            f.write(model_json)

    return model_json
示例#9
0
    def __init__(self):
        self.model = Sequential()
        self.model.add(convolutional.Convolution2D(input_shape=(48, 19, 19), nb_filter=K, nb_row=5, nb_col=5,
                                                   init='uniform', activation='relu', border_mode='same'))
        for i in range(2,13):
            self.model.add(convolutional.Convolution2D(nb_filter=K, nb_row=3, nb_col=3,
                                                       init='uniform', activation='relu', border_mode='same'))
        self.model.add(convolutional.Convolution2D(nb_filter=1, nb_row=1, nb_col=1,
                                                   init='uniform', border_mode='same'))
        self.model.add(Reshape((19,19)))
        self.model.add(Activation('softmax'))

        sgd = SGD(lr=LEARNING_RATE, decay=DECAY)
        self.model.compile(loss='binary_crossentropy', optimizer=sgd)
示例#10
0
        def add_resnet_unit(path, K, **params):
            """Add a resnet unit to path starting at layer 'K',
			adding as many (ReLU + Conv2D) modules as specified by n_skip_K

			Returns new path and next layer index, i.e. K + n_skip_K, in a tuple
			"""
            # loosely based on https://github.com/keunwoochoi/residual_block_keras
            # (see also keras docs here: http://keras.io/getting-started/functional-api-guide/#all-models-are-callable-just-like-layers)

            block_input = path
            # use n_skip_K if it is there, default to 1
            skip_key = "n_skip_%d" % K
            n_skip = params.get(skip_key, 1)
            for i in range(n_skip):
                layer = K + i
                # add BatchNorm
                path = BatchNormalization()(path)
                # add ReLU
                path = Activation('relu')(path)
                # use filter_width_K if it is there, otherwise use 3
                filter_key = "filter_width_%d" % layer
                filter_width = params.get(filter_key, 3)
                # add Conv2D
                path = convolutional.Convolution2D(
                    nb_filter=params["filters_per_layer"],
                    nb_row=filter_width,
                    nb_col=filter_width,
                    init='uniform',
                    activation='linear',
                    border_mode='same')(path)
            # Merge 'input layer' with the path
            path = merge([block_input, path], mode='sum')
            return path, K + n_skip
示例#11
0
    def __init__(self):
        self.model = Sequential()
        self.model.add(convolutional.Convolution2D(input_shape=(49, 19, 19), nb_filter=K, nb_row=5, nb_col=5,
                                              init='uniform', activation='relu', border_mode='same'))
        for i in range(2,13):
            self.model.add(convolutional.Convolution2D(nb_filter=K, nb_row=3, nb_col=3,
                                                  init='uniform', activation='relu', border_mode='same'))

        self.model.add(convolutional.Convolution2D(nb_filter=1, nb_row=1, nb_col=1,
                                              init='uniform', activation='linear', border_mode='same'))
        self.model.add(Flatten())
        self.model.add(Dense(256,init='uniform'))
        self.model.add(Dense(1,init='uniform',activation="tanh"))

        sgd = SGD(lr=LEARNING_RATE, decay=DECAY)
        self.model.compile(loss='mean_squared_error', optimizer=sgd)
示例#12
0
def Simple_Convo(train, nb_classes):
    batch_size = 128
    img_rows, img_cols = 56, 56

    nb_filters_1 = 32  # 64
    nb_filters_2 = 64  # 128
    nb_filters_3 = 128  # 256
    nb_conv = 3

    # train = np.concatenate([train, train], axis=1)
    trainX = train[:, 1:].reshape(train.shape[0], 28, 28, 1)
    trainX = trainX.astype(float)

    trainX /= 255.0
    trainX = np.concatenate([trainX, np.roll(trainX, 14, axis=1)], axis=1)
    trainX = np.concatenate([trainX, np.fliplr(np.roll(trainX, 7, axis=2))], axis=2)
    print(trainX.shape)

    cnn = models.Sequential()

    cnn.add(conv.Convolution2D(nb_filters_1, nb_conv, nb_conv, activation="relu", input_shape=(img_rows, img_cols, 1),
                               border_mode='same'))
    cnn.add(conv.Convolution2D(nb_filters_1, nb_conv, nb_conv, activation="relu", border_mode='same'))
    cnn.add(conv.MaxPooling2D(strides=(2, 2)))

    cnn.add(conv.Convolution2D(nb_filters_2, nb_conv, nb_conv, activation="relu", border_mode='same'))
    cnn.add(conv.Convolution2D(nb_filters_2, nb_conv, nb_conv, activation="relu", border_mode='same'))
    cnn.add(conv.MaxPooling2D(strides=(2, 2)))

    # cnn.add(conv.Convolution2D(nb_filters_3, nb_conv, nb_conv, activation="relu", border_mode='same'))
    # cnn.add(conv.Convolution2D(nb_filters_3, nb_conv, nb_conv, activation="relu", border_mode='same'))
    # cnn.add(conv.Convolution2D(nb_filters_3, nb_conv, nb_conv, activation="relu", border_mode='same'))
    # cnn.add(conv.Convolution2D(nb_filters_3, nb_conv, nb_conv, activation="relu", border_mode='same'))
    # cnn.add(conv.MaxPooling2D(strides=(2,2)))

    cnn.add(core.Flatten())
    cnn.add(core.Dropout(0.2))
    cnn.add(core.Dense(128, activation="relu"))  # 4096
    cnn.add(core.Dense(nb_classes, activation="softmax"))

    cnn.summary()
    return cnn
示例#13
0
    def test_convolution_2d(self):
        nb_samples = 8

        nb_filter = 9
        stack_size = 7
        nb_row = 10
        nb_col = 6

        input_nb_row = 11
        input_nb_col = 12

        weights_in = [
            np.ones((nb_filter, stack_size, nb_row, nb_col)),
            np.ones(nb_filter)
        ]

        self.assertRaises(Exception,
                          convolutional.Convolution2D,
                          nb_filter,
                          stack_size,
                          nb_row,
                          nb_col,
                          border_mode='foo')

        input = np.ones((nb_samples, stack_size, input_nb_row, input_nb_col))
        for weight in [None, weights_in]:
            for border_mode in ['valid', 'full', 'same']:
                for subsample in [(1, 1), (2, 3)]:
                    if border_mode == 'same' and subsample != (1, 1):
                        continue
                    for W_regularizer in [None, 'l2']:
                        for b_regularizer in [None, 'l2']:
                            for act_regularizer in [None, 'l2']:
                                layer = convolutional.Convolution2D(
                                    nb_filter,
                                    stack_size,
                                    nb_row,
                                    nb_col,
                                    weights=weight,
                                    border_mode=border_mode,
                                    W_regularizer=W_regularizer,
                                    b_regularizer=b_regularizer,
                                    activity_regularizer=act_regularizer,
                                    subsample=subsample)

                                layer.input = theano.shared(value=input)
                                for train in [True, False]:
                                    out = layer.get_output(train).eval()
                                    if border_mode == 'same' and subsample == (
                                            1, 1):
                                        assert out.shape[2:] == input.shape[2:]

                                config = layer.get_config()
示例#14
0
def test_convolution_2d():
    nb_samples = 8
    nb_filter = 9
    stack_size = 7
    nb_row = 10
    nb_col = 6

    input_nb_row = 11
    input_nb_col = 12

    weights_in = [
        np.ones((nb_filter, stack_size, nb_row, nb_col)),
        np.ones(nb_filter)
    ]

    input = np.ones((nb_samples, stack_size, input_nb_row, input_nb_col))
    for weight in [None, weights_in]:
        for border_mode in ['valid', 'same']:
            for subsample in [(1, 1), (2, 2)]:
                if border_mode == 'same' and subsample != (1, 1):
                    continue
                for W_regularizer in [None, 'l2']:
                    for b_regularizer in [None, 'l2']:
                        for act_regularizer in [None, 'l2']:
                            layer = convolutional.Convolution2D(
                                nb_filter,
                                nb_row,
                                nb_col,
                                weights=weight,
                                border_mode=border_mode,
                                W_regularizer=W_regularizer,
                                b_regularizer=b_regularizer,
                                activity_regularizer=act_regularizer,
                                subsample=subsample,
                                input_shape=(stack_size, None, None))

                            layer.input = K.variable(input)
                            for train in [True, False]:
                                out = K.eval(layer.get_output(train))
                                if border_mode == 'same' and subsample == (1,
                                                                           1):
                                    assert out.shape[2:] == input.shape[2:]
                            layer.get_config()
示例#15
0
def cpg_layers(params):
    layers = []
    if params.drop_in:
        layer = kcore.Dropout(params.drop_in)
        layers.append(('xd', layer))
    nb_layer = len(params.nb_filter)
    w_reg = kr.WeightRegularizer(l1=params.l1, l2=params.l2)
    for l in range(nb_layer):
        layer = kconv.Convolution2D(nb_filter=params.nb_filter[l],
                                    nb_row=1,
                                    nb_col=params.filter_len[l],
                                    activation=params.activation,
                                    init='glorot_uniform',
                                    W_regularizer=w_reg,
                                    border_mode='same')
        layers.append(('c%d' % (l + 1), layer))
        layer = kconv.MaxPooling2D(pool_size=(1, params.pool_len[l]))
        layers.append(('p%d' % (l + 1), layer))

    layer = kcore.Flatten()
    layers.append(('f1', layer))
    if params.drop_out:
        layer = kcore.Dropout(params.drop_out)
        layers.append(('f1d', layer))
    if params.nb_hidden:
        layer = kcore.Dense(params.nb_hidden,
                            activation='linear',
                            init='glorot_uniform')
        layers.append(('h1', layer))
        if params.batch_norm:
            layer = knorm.BatchNormalization()
            layers.append(('h1b', layer))
        layer = kcore.Activation(params.activation)
        layers.append(('h1a', layer))
        if params.drop_out:
            layer = kcore.Dropout(params.drop_out)
            layers.append(('h1d', layer))
    return layers
示例#16
0
    def create_network(**kwargs):
        """construct a convolutional neural network with Resnet-style skip connections.
                Arguments are the same as with the default CNNPolicy network, except the default
                number of layers is 20 plus a new n_skip parameter

                Keword Arguments:
                - input_dim:             depth of features to be processed by first layer (no default)
                - board:                 width of the go board to be processed (default 19)
                - filters_per_layer:     number of filters used on every layer (default 128)
                - layers:                number of convolutional steps (default 20)
                - filter_width_K:        (where K is between 1 and <layers>) width of filter on
                                        layer K (default 3 except 1st layer which defaults to 5).
                                        Must be odd.
                - n_skip_K:             (where K is as in filter_width_K) number of convolutional
                                        layers to skip with the linear path starting at K. Only valid
                                        at K >= 1. (Each layer defaults to 1)

                Note that n_skip_1=s means that the next valid value of n_skip_* is 3

                A diagram may help explain (numbers indicate layer):

                   1        2        3           4        5        6
                I--C--B--R--C--B--R--C--M--B--R--C--B--R--C--B--R--C--M  ...  M --R--F--O
                    \__________________/ \___________________________/ \ ... /
                        [n_skip_1 = 2]          [n_skip_3 = 3]

                I - input
                B - BatchNormalization
                R - ReLU
                C - Conv2D
                F - Flatten
                O - output
                M - merge

                The input is always passed through a Conv2D layer, the output of which
                layer is counted as '1'.  Each subsequent [R -- C] block is counted as
                one 'layer'. The 'merge' layer isn't counted; hence if n_skip_1 is 2,
                the next valid skip parameter is n_skip_3, which will start at the
                output of the merge

                """

        defaults = {
            "board": 9,
            "filters_per_layer": 128,
            "layers": 20,
            "filter_width_1": 5
        }
        # copy defaults, but override with anything in kwargs
        params = defaults
        params.update(kwargs)
        # create the network using Keras' functional API,
        # since this isn't 'Sequential'
        model_input = Input(shape=(params['input_dim'], params['board'],
                                   params['board']))
        # create first layer
        convolution_path = convolutional.Convolution2D(
            input_shape=(),
            nb_filter=params['filters_per_layer'],
            nb_row=params['filter_width_1'],
            nb_col=params['filter_width_1'],
            init='uniform',
            activation='linear',
            border_name='same')(model_input)
示例#17
0
    def create_network(**kwargs):
        """construct a convolutional neural network with Resnet-style skip connections.
		Arguments are the same as with the default CNNPolicy network, except the default
		number of layers is 20 plus a new n_skip parameter

		Keword Arguments:
		- input_dim:         	depth of features to be processed by first layer (no default)
		- board:             	width of the go board to be processed (default 19)
		- filters_per_layer: 	number of filters used on every layer (default 128)
		- layers:            	number of convolutional steps (default 20)
		- filter_width_K:    	(where K is between 1 and <layers>) width of filter on
								layer K (default 3 except 1st layer which defaults to 5).
								Must be odd.
		- n_skip_K:             (where K is as in filter_width_K) number of convolutional
								layers to skip with the linear path starting at K. Only valid
								at K >= 1. (Each layer defaults to 1)

		Note that n_skip_1=s means that the next valid value of n_skip_* is 3

		A diagram may help explain (numbers indicate layer):

			1             2              3                   4              5              6
		I--C -- B -- R -- C -- B -- R -- C -- M -- B -- R -- C -- B -- R -- C -- B -- R -- C -- M  ...  M  -- R -- F -- O
			\___________________________/ \____________________________________________________/ \ ... /
					[n_skip_1 = 2]                             [n_skip_3 = 3]

		I - input
		B - BatchNormalization
		R - ReLU
		C - Conv2D
		F - Flatten
		O - output
		M - merge

		The input is always passed through a Conv2D layer, the output of which layer is counted as '1'.
		Each subsequent [R -- C] block is counted as one 'layer'. The 'merge' layer isn't counted; hence
		if n_skip_1 is 2, the next valid skip parameter is n_skip_3, which will start at the output
		of the merge
		"""
        defaults = {
            "board": 19,
            "filters_per_layer": 128,
            "layers": 20,
            "filter_width_1": 5
        }
        # copy defaults, but override with anything in kwargs
        params = defaults
        params.update(kwargs)

        # create the network using Keras' functional API,
        # since this isn't 'Sequential'
        model_input = Input(shape=(params["input_dim"], params["board"],
                                   params["board"]))

        # create first layer
        convolution_path = convolutional.Convolution2D(
            input_shape=(),
            nb_filter=params["filters_per_layer"],
            nb_row=params["filter_width_1"],
            nb_col=params["filter_width_1"],
            init='uniform',
            activation='linear',  # relu activations done inside resnet modules
            border_mode='same')(model_input)

        def add_resnet_unit(path, K, **params):
            """Add a resnet unit to path starting at layer 'K',
			adding as many (ReLU + Conv2D) modules as specified by n_skip_K

			Returns new path and next layer index, i.e. K + n_skip_K, in a tuple
			"""
            # loosely based on https://github.com/keunwoochoi/residual_block_keras
            # (see also keras docs here: http://keras.io/getting-started/functional-api-guide/#all-models-are-callable-just-like-layers)

            block_input = path
            # use n_skip_K if it is there, default to 1
            skip_key = "n_skip_%d" % K
            n_skip = params.get(skip_key, 1)
            for i in range(n_skip):
                layer = K + i
                # add BatchNorm
                path = BatchNormalization()(path)
                # add ReLU
                path = Activation('relu')(path)
                # use filter_width_K if it is there, otherwise use 3
                filter_key = "filter_width_%d" % layer
                filter_width = params.get(filter_key, 3)
                # add Conv2D
                path = convolutional.Convolution2D(
                    nb_filter=params["filters_per_layer"],
                    nb_row=filter_width,
                    nb_col=filter_width,
                    init='uniform',
                    activation='linear',
                    border_mode='same')(path)
            # Merge 'input layer' with the path
            path = merge([block_input, path], mode='sum')
            return path, K + n_skip

        # create all other layers
        layer = 1
        while layer < params['layers']:
            convolution_path, layer = add_resnet_unit(convolution_path, layer,
                                                      **params)
        if layer > params['layers']:
            print("Due to skipping, ended with {} layers instead of {}".format(
                layer, params['layers']))

        # since each layer's activation was linear, need one more ReLu
        convolution_path = Activation('relu')(convolution_path)

        # the last layer maps each <filters_per_layer> featuer to a number
        convolution_path = convolutional.Convolution2D(
            nb_filter=1,
            nb_row=1,
            nb_col=1,
            init='uniform',
            border_mode='same')(convolution_path)
        # flatten output
        network_output = Flatten()(convolution_path)
        # add a bias to each board location
        network_output = Bias()(network_output)
        # softmax makes it into a probability distribution
        network_output = Activation('softmax')(network_output)

        return Model(input=[model_input], output=[network_output])
示例#18
0
import pandas as pd
from keras import models, optimizers, backend
from keras.layers import core, convolutional, pooling
from sklearn import model_selection,utils
from dataPreprocessing import generate_samples, preprocess

if __name__ == '__main__':

    # Read splitted  data

    df_train = pd.read_csv('train.csv')
    df_valid = pd.read_csv('test.csv')

    # CNN Model Architecture
    model = models.Sequential()
    model.add(convolutional.Convolution2D(16, 3, 3, input_shape=(32, 128, 3), activation='relu'))
    model.add(pooling.MaxPooling2D(pool_size=(2, 2)))
    model.add(convolutional.Convolution2D(32, 3, 3, activation='relu'))
    model.add(pooling.MaxPooling2D(pool_size=(2, 2)))
    model.add(convolutional.Convolution2D(64, 3, 3, activation='relu'))
    model.add(pooling.MaxPooling2D(pool_size=(2, 2)))
    model.add(core.Flatten())
    model.add(core.Dense(500, activation='relu'))
    model.add(core.Dropout(.5))
    model.add(core.Dense(100, activation='relu'))
    model.add(core.Dropout(.25))
    model.add(core.Dense(20, activation='relu'))
    model.add(core.Dense(1))
    model.compile(optimizer=optimizers.Adam(lr=1e-04), loss='mean_squared_error')

    # load the exist model
示例#19
0
    def create_network(**kwargs):
        """construct a convolutional neural network.

                Keword Arguments:
                - input_dim:             depth of features to be processed by first layer (no default)
                - board:                 width of the go board to be processed (default 19)
                - filters_per_layer:     number of filters used on every layer (default 128)
                - filters_per_layer_K:   (where K is between 1 and <layers>) number of filters
                                         used on layer K (default #filters_per_layer)
                - layers:                number of convolutional steps (default 12)
                - filter_width_K:        (where K is between 1 and <layers>) width of filter on
                                         layer K (default 3 except 1st layer which defaults to 5).
                                         Must be odd.
        """

        defaults = {
            "board": 9,
            "filters_per_layer": 128,
            "layers": 12,
            "filter_width_1": 5
        }
        # copy defaults, but override with anything in kwargs
        params = defaults
        params.update(kwargs)
        # create the network:
        # a series of zero-paddings followed by convolutions
        # such that the output dimensions are also board x board
        network = Sequential()
        # create first layer
        network.add(
            convolutional.Convolution2D(
                input_shape=(params["input_dim"], params['board'],
                             params['board']),
                nb_filter=params.get('filters_per_layer_1',
                                     params['filters_per_layer']),
                nb_row=params['filter_width_1'],
                nb_col=params['filter_width_1'],
                init='uniform',
                activation='relu',
                border_mode='same'))

        # create all other layers
        for i in range(2, params['layers'] + 1):
            # use filter_width_K if it is there, otherwise use 3
            filter_key = 'filter_width_%d' % i
            filter_width = params.get(filter_key, 3)

            # use filters_per_layer_K if it is there, otherwise use default value
            filter_count_key = "filters_per_layer_%d" % i
            filter_nb = params.get(filter_count_key,
                                   params['filters_per_layer'])

            network.add(
                convolutional.Convolution2D(nb_filter=filter_nb,
                                            nb_row=filter_width,
                                            nb_col=filter_width,
                                            init='uniform',
                                            activation='relu',
                                            border_mode='same'))

        # the last layer maps each <filters_per_layer> feature to a number
        network.add(
            convolutional.Convolution2D(nb_filter=1,
                                        nb_row=1,
                                        nb_col=1,
                                        init='uniform',
                                        border_mode='same'))
        # reshape output to be board x board
        network.add(Flatten())
        # add a bias to each board location
        network.add(Bias())
        network.add(Activation('softmax'))
        return network
示例#20
0
def test_TimeDistributed():
    # first, test with Dense layer
    model = Sequential()
    model.add(wrappers.TimeDistributed(core.Dense(2), input_shape=(3, 4)))
    model.add(core.Activation('relu'))
    model.compile(optimizer='rmsprop', loss='mse')
    model.fit(np.random.random((10, 3, 4)),
              np.random.random((10, 3, 2)),
              nb_epoch=1,
              batch_size=10)

    # test config
    model.get_config()

    # compare to TimeDistributedDense
    test_input = np.random.random((1, 3, 4))
    test_output = model.predict(test_input)
    weights = model.layers[0].get_weights()

    reference = Sequential()
    reference.add(
        core.TimeDistributedDense(2, input_shape=(3, 4), weights=weights))
    reference.add(core.Activation('relu'))
    reference.compile(optimizer='rmsprop', loss='mse')

    reference_output = reference.predict(test_input)
    assert_allclose(test_output, reference_output, atol=1e-05)

    # test when specifying a batch_input_shape
    reference = Sequential()
    reference.add(
        core.TimeDistributedDense(2,
                                  batch_input_shape=(1, 3, 4),
                                  weights=weights))
    reference.add(core.Activation('relu'))
    reference.compile(optimizer='rmsprop', loss='mse')

    reference_output = reference.predict(test_input)
    assert_allclose(test_output, reference_output, atol=1e-05)

    # test with Convolution2D
    model = Sequential()
    model.add(
        wrappers.TimeDistributed(convolutional.Convolution2D(
            5, 2, 2, border_mode='same'),
                                 input_shape=(2, 4, 4, 3)))
    model.add(core.Activation('relu'))
    model.compile(optimizer='rmsprop', loss='mse')
    model.train_on_batch(np.random.random((1, 2, 4, 4, 3)),
                         np.random.random((1, 2, 4, 4, 5)))

    model = model_from_json(model.to_json())
    model.summary()

    # test stacked layers
    model = Sequential()
    model.add(wrappers.TimeDistributed(core.Dense(2), input_shape=(3, 4)))
    model.add(wrappers.TimeDistributed(core.Dense(3)))
    model.add(core.Activation('relu'))
    model.compile(optimizer='rmsprop', loss='mse')

    model.fit(np.random.random((10, 3, 4)),
              np.random.random((10, 3, 3)),
              nb_epoch=1,
              batch_size=10)

    # test wrapping Sequential model
    model = Sequential()
    model.add(core.Dense(3, input_dim=2))
    outer_model = Sequential()
    outer_model.add(wrappers.TimeDistributed(model, input_shape=(3, 2)))
    outer_model.compile(optimizer='rmsprop', loss='mse')
    outer_model.fit(np.random.random((10, 3, 2)),
                    np.random.random((10, 3, 3)),
                    nb_epoch=1,
                    batch_size=10)

    # test with functional API
    x = Input(shape=(3, 2))
    y = wrappers.TimeDistributed(model)(x)
    outer_model = Model(x, y)
    outer_model.compile(optimizer='rmsprop', loss='mse')
    outer_model.fit(np.random.random((10, 3, 2)),
                    np.random.random((10, 3, 3)),
                    nb_epoch=1,
                    batch_size=10)
示例#21
0
# read data from hard drive
train_data_raw = pd.read_csv("./input/train.csv").values
test_data_raw = pd.read_csv("./input/test.csv").values

img_cols = 28
img_rows = 28

train_X = train_data_raw[:, 1:].reshape(train_data_raw.shape[0], 1, img_rows, img_cols)
train_Y = kutils.to_categorical(train_data_raw[:, 0])
num_class = train_Y.shape[1]

num_filters_1 = 64
conv_dim = 3
cnn = kmodels.Sequential()
cnn.add(kconv.ZeroPadding2D((1,1), input_shape=(1, 28, 28),))
cnn.add(kconv.Convolution2D(num_filters_1, conv_dim, conv_dim,  activation="relu"))
cnn.add(kpool.MaxPooling2D(strides=(2, 2)))

num_filters_2 = 128
cnn.add(kconv.ZeroPadding2D((1, 1)))
cnn.add(kconv.Convolution2D(num_filters_2, conv_dim, conv_dim, activation="relu"))
cnn.add(kpool.MaxPooling2D(strides=(2, 2)))

conv_dim_2 = 3
cnn.add(kconv.ZeroPadding2D((1, 1)))
cnn.add(kconv.Convolution2D(num_filters_2, conv_dim_2, conv_dim_2, activation="relu"))
cnn.add(kpool.MaxPooling2D(strides=(2, 2)))

cnn.add(kconv.ZeroPadding2D((1, 1)))
cnn.add(kconv.Convolution2D(num_filters_2, conv_dim_2, conv_dim_2, activation="relu"))
cnn.add(kpool.MaxPooling2D(strides=(2, 2)))
nb_conv = 3

trainX = train[:, 1:].reshape(train.shape[0], 1, img_rows, img_cols)
trainX = trainX.astype(float)
trainX /= 255.0  # preprocess the data

trainY = kutils.to_categorical(train[:, 0])
nb_classes = trainY.shape[1]

cnn = models.Sequential()

cnn.add(conv.ZeroPadding2D(
    (1, 1),
    input_shape=(1, 48, 48),
))
cnn.add(conv.Convolution2D(32, 3, 3, activation="relu"))
cnn.add(conv.ZeroPadding2D((1, 1)))
cnn.add(conv.Convolution2D(32, 3, 3, activation="relu"))
cnn.add(conv.MaxPooling2D(strides=(2, 2)))

cnn.add(conv.ZeroPadding2D((1, 1)))
cnn.add(conv.Convolution2D(64, 3, 3, activation="relu"))
cnn.add(conv.ZeroPadding2D((1, 1)))
cnn.add(conv.Convolution2D(64, 3, 3, activation="relu"))
cnn.add(conv.MaxPooling2D(strides=(2, 2)))

# cnn.add(conv.ZeroPadding2D((1, 1)))
# cnn.add(conv.Convolution2D(nb_filters_3, nb_conv, nb_conv, activation="relu"))
# cnn.add(conv.ZeroPadding2D((1, 1)))
# cnn.add(conv.Convolution2D(nb_filters_3, nb_conv, nb_conv, activation="relu"))
# cnn.add(conv.ZeroPadding2D((1, 1)))
示例#23
0
文件: test.py 项目: EbTech/car-rl
nb_actions = env.action_space.n

# Next, we build a very simple model.
model = Sequential()
# model.add(convolutional.Convolution2D(32, 3, 3, activation='tanh', dim_ordering='th',
#     input_shape=(1,) + env.observation_space.shape))
# model.add(pooling.MaxPooling2D(pool_size=(2, 2), dim_ordering='th'))
# model.add(convolutional.Convolution2D(32, 3, 3, activation='tanh', dim_ordering='th'))
# model.add(pooling.MaxPooling2D(pool_size=(2, 2), dim_ordering='th'))
# model.add(convolutional.Convolution2D(32, 3, 3, activation='tanh', dim_ordering='th'))
# model.add(pooling.MaxPooling2D(pool_size=(2, 2), dim_ordering='th'))
# model.add(convolutional.Convolution2D(16, 3, 3, activation='tanh', dim_ordering='th'))
# model.add(Flatten())
# model.add(Dense(128, activation='tanh'))
model.add(Reshape(env.observation_space.shape, input_shape=(1,) + env.observation_space.shape))
model.add(convolutional.Convolution2D(32, 9, 9, subsample=(4, 4),
    activation='relu', dim_ordering='tf'))
model.add(convolutional.Convolution2D(32, 5, 5, subsample=(2, 2),
    activation='relu', dim_ordering='tf'))
model.add(convolutional.Convolution2D(32, 3, 3,
    activation='relu', dim_ordering='tf'))
model.add(Flatten())
model.add(Dense(32, activation='relu'))
model.add(Dense(nb_actions))
model.add(Activation('linear'))
print(model.summary())

# Finally, we configure and compile our agent. You can use every built-in Keras optimizer and
# even the metrics!
memory = SequentialMemory(limit=5000, window_length=1)
policy = BoltzmannQPolicy()
dqn = DQNAgent(model=model, nb_actions=nb_actions, memory=memory, nb_steps_warmup=128,

local_project_path = './'
local_data_path = os.path.join(local_project_path, 'data')

# ### Model

# <i>Inspired from [Navoshta](https://github.com/navoshta/behavioral-cloning) and [Navoshta](https://github.com/jeremy-shannon/CarND-Behavioral-Cloning-Project)</i>
#
if not False:
    model = Sequential()
    # Normalize
    model.add(
        convolutional.Convolution2D(16,
                                    3,
                                    3,
                                    input_shape=(32, 128, 3),
                                    activation='relu',
                                    W_regularizer=l2(0.001)))
    model.add(pooling.MaxPooling2D(pool_size=(2, 2)))
    model.add(
        convolutional.Convolution2D(32,
                                    3,
                                    3,
                                    activation='relu',
                                    W_regularizer=l2(0.001)))
    model.add(pooling.MaxPooling2D(pool_size=(2, 2)))
    model.add(
        convolutional.Convolution2D(64,
                                    3,
                                    3,
                                    activation='relu',
示例#25
0
nb_filters_3 = 128  # 256
nb_conv = 3

X_train = train[:, 1:].reshape(train.shape[0], 28, 28, 1)
# X_train = train[:,1:].reshape(-1, 28, 28, 1)
X_train = X_train.astype(float)
X_train = X_train / 255.0

Y_train = kutils.to_categorical(train[:, 0])

cnn = models.Sequential()

cnn.add(
    conv.Convolution2D(nb_filters_1,
                       nb_conv,
                       nb_conv,
                       activation="relu",
                       input_shape=(28, 28, 1),
                       border_mode="same"))
cnn.add(
    conv.Convolution2D(nb_filters_1,
                       nb_conv,
                       nb_conv,
                       activation="relu",
                       border_mode="same"))
cnn.add(conv.MaxPooling2D(strides=(2, 2)))

cnn.add(
    conv.Convolution2D(nb_filters_2,
                       nb_conv,
                       nb_conv,
                       activation="relu",
import keras.models as kmodel
import keras.layers.convolutional as kconv
import keras.layers.core as klcore

ds = dataset.DataSet.load_from_path('usps', '../gmllib/datasets/usps')

# convert to 2D images
x_train = np.reshape(ds.train.x, (ds.train.N, 1, 16, 16))
x_test = np.reshape(ds.test.x, (ds.test.N, 1, 16, 16))

model = kmodel.Sequential()

model.add(
    kconv.Convolution2D(nb_filter=4,
                        nb_row=5,
                        nb_col=5,
                        input_shape=(1, 16, 16),
                        border_mode='valid'))
model.add(klcore.Activation('tanh'))
# instead of average pooling, we use max pooling
model.add(kconv.MaxPooling2D(pool_size=(2, 2)))

# the 12 feature maps in this layer are connected in a specific pattern to the below layer, but it is not possible
# do this in keras easily. in fact, I don't know how keras connects the feature maps in one layer to the next.
model.add(kconv.Convolution2D(nb_filter=12, nb_row=5, nb_col=5))
model.add(klcore.Activation('tanh'))
model.add(kconv.MaxPooling2D(pool_size=(2, 2)))

model.add(klcore.Flatten())
model.add(klcore.Dense(output_dim=10))
model.add(klcore.Activation('softmax'))
trainX = train[:, 1:].reshape(train.shape[0], 1, img_rows, img_cols)
trainX = trainX.astype(float)
trainX /= 255.0

trainY = kutils.to_categorical(train[:, 0])
nb_classes = trainY.shape[1]

cnn = models.Sequential()

cnn.add(conv.ZeroPadding2D(
    (1, 1),
    input_shape=(1, img_rows, img_cols),
))

cnn.add(conv.Convolution2D(filters[0], kernel, kernel))
cnn.add(core.Activation('relu'))
cnn.add(conv.MaxPooling2D(strides=(pool, pool)))

cnn.add(conv.ZeroPadding2D((1, 1)))

cnn.add(conv.Convolution2D(filters[1], kernel, kernel))
cnn.add(core.Activation('relu'))
cnn.add(conv.MaxPooling2D(strides=(pool, pool)))

cnn.add(conv.ZeroPadding2D((1, 1)))

cnn.add(core.Flatten())
cnn.add(core.Dropout(0.5))
cnn.add(core.Dense(128))
cnn.add(core.Activation('relu'))
示例#28
0
nb_filters_2 = 64  # 128
nb_filters_3 = 128  # 256
kernel_size = 5

trainX = train[:, 1:].reshape(train.shape[0], 1, img_rows, img_cols)
trainX = trainX.astype(float)
trainX /= 255.0  # preprocess the data
trainY = kutils.to_categorical(train[:, 0])
nb_classes = trainY.shape[1]

cnn = models.Sequential()

cnn.add(conv.ZeroPadding2D((1, 1), input_shape=(1, img_rows, img_cols)))
cnn.add(
    conv.Convolution2D(nb_filters_2,
                       kernel_size,
                       kernel_size,
                       activation="relu"))
cnn.add(
    conv.Convolution2D(nb_filters_2,
                       kernel_size,
                       kernel_size,
                       activation="relu"))
cnn.add(conv.MaxPooling2D(strides=(2, 2)))
#cnn.add(conv.ZeroPadding2D((1, 1)))
cnn.add(
    conv.Convolution2D(nb_filters_2,
                       kernel_size,
                       kernel_size,
                       activation="relu"))
cnn.add(
    conv.Convolution2D(nb_filters_2,
示例#29
0
def convnet_alexnet_lion_keras(image_dims):
    #    model = Sequential()
    #    model.add(Lambda(lambda x: (x / 255.0) - 0.5, input_shape=image_dims))

    NR_CLASSES = 6

    input = layers.Input(shape=image_dims, name="Input")
    conv_1 = convolutional.Convolution2D(96,
                                         11,
                                         11,
                                         border_mode='valid',
                                         name="conv_1",
                                         activation='relu',
                                         init='glorot_uniform')(input)
    pool_1 = convolutional.MaxPooling2D(pool_size=(3, 3),
                                        name="pool_1")(conv_1)
    zero_padding_1 = convolutional.ZeroPadding2D(padding=(1, 1),
                                                 name="zero_padding_1")(pool_1)
    conv_2 = convolutional.Convolution2D(256,
                                         3,
                                         3,
                                         border_mode='valid',
                                         name="conv_2",
                                         activation='relu',
                                         init='glorot_uniform')(zero_padding_1)
    pool_2 = convolutional.MaxPooling2D(pool_size=(3, 3),
                                        name="pool_2")(conv_2)
    zero_padding_2 = keras.layers.convolutional.ZeroPadding2D(
        padding=(1, 1), name="zero_padding_2")(pool_2)
    conv_3 = convolutional.Convolution2D(384,
                                         3,
                                         3,
                                         border_mode='valid',
                                         name="conv_3",
                                         activation='relu',
                                         init='glorot_uniform')(zero_padding_2)
    conv_4 = convolutional.Convolution2D(384,
                                         3,
                                         3,
                                         border_mode='valid',
                                         name="conv_4",
                                         activation='relu',
                                         init='glorot_uniform')(conv_3)
    conv_5 = convolutional.Convolution2D(256,
                                         3,
                                         3,
                                         border_mode='valid',
                                         name="conv_5",
                                         activation='relu',
                                         init='glorot_uniform')(conv_4)
    pool_3 = convolutional.MaxPooling2D(pool_size=(3, 3),
                                        name="pool_3")(conv_5)
    flatten = core.Flatten(name="flatten")(pool_3)
    fc_1 = core.Dense(4096,
                      name="fc_1",
                      activation='relu',
                      init='glorot_uniform')(flatten)
    fc_1 = core.Dropout(0.5, name="fc_1_dropout")(fc_1)
    output = core.Dense(4096,
                        name="Output",
                        activation='relu',
                        init='glorot_uniform')(fc_1)
    output = core.Dropout(0.5, name="Output_dropout")(output)
    fc_2 = core.Dense(NR_CLASSES,
                      name="fc_2",
                      activation='softmax',
                      init='glorot_uniform')(output)

    return models.Model([input], [fc_2])
from sklearn import model_selection
from keras import models, optimizers
from keras.layers import convolutional, Lambda, ELU, pooling, core

### Load and split data
df = pd.io.parsers.read_csv('driving_log.csv')
train_data, valid_data = model_selection.train_test_split(df, test_size=.2)

### Cameras setting
cameras = ['left', 'center', 'right']
cameras_steering_correction = [.25, 0., -.25]

### Train Model
model = models.Sequential()
model.add(Lambda(lambda x: x / 127.5 - 1.0, input_shape=(32, 128, 3)))
model.add(convolutional.Convolution2D(16, 3, 3, input_shape=(32, 128, 3)))
model.add(ELU())
model.add(pooling.MaxPooling2D(pool_size=(2, 2)))
model.add(convolutional.Convolution2D(32, 3, 3))
model.add(ELU())
model.add(pooling.MaxPooling2D(pool_size=(2, 2)))
model.add(convolutional.Convolution2D(64, 3, 3))
model.add(pooling.MaxPooling2D(pool_size=(2, 2)))
model.add(core.Flatten())
model.add(core.Dense(500))
model.add(ELU())
model.add(core.Dropout(.5))
model.add(core.Dense(100))
model.add(ELU())
model.add(core.Dropout(.25))
model.add(core.Dense(20))