def createModel(dense1, dropout1, dense2, dropout2): model = Sequential() model.add(Dense(dense1, input_shape=(dims,), init='he_uniform', W_regularizer=regularizers.l1(0.0005))) model.add(Activation('relu')) model.add(Dropout(dropout1))# input dropout model.add(Dense(dense2, init='he_uniform')) model.add(Activation('relu')) model.add(Dropout(dropout2)) model.add(Dense(2, init='he_uniform')) model.add(Activation('sigmoid')) model.compile(loss='binary_crossentropy', optimizer="adagrad") return model
def createModel(x): model = Sequential() model.add(Dense(x[0], input_shape=(dims,), init='he_uniform', W_regularizer=regularizers.l1(0.0005))) model.add(Activation('relu')) model.add(Dropout(x[1]))# input dropout model.add(Dense(x[2], init='he_uniform')) model.add(Activation('relu')) model.add(Dropout(x[3])) model.add(Dense(nb_classes, init='he_uniform')) model.add(Activation('sigmoid')) model.compile(loss='binary_crossentropy', optimizer="adagrad") return model
def createModel(): model = Sequential() model.add(Dense(int(85), input_shape=(dims,), init='he_uniform', W_regularizer=regularizers.l1(0.0005))) model.add(Dropout(0.05)) # input dropout model.add(PReLU()) model.add(BatchNormalization()) model.add(Dropout(0.1)) model.add(Dense(int(83))) model.add(PReLU()) model.add(BatchNormalization()) model.add(Dropout(0.15)) model.add(Dense(nb_classes)) model.add(Activation('sigmoid')) model.compile(loss='binary_crossentropy', optimizer="adam") return model
def createModel(dense1, dropout1, dense2, dropout2): model = Sequential() model.add( Dense(dense1, input_shape=(dims, ), init='he_uniform', W_regularizer=regularizers.l1(0.0005))) model.add(Activation('relu')) model.add(Dropout(dropout1)) # input dropout model.add(Dense(dense2, init='he_uniform')) model.add(Activation('relu')) model.add(Dropout(dropout2)) model.add(Dense(2, init='he_uniform')) model.add(Activation('sigmoid')) model.compile(loss='binary_crossentropy', optimizer="adagrad") return model
def kerascv(dense1, dense2, epochs): ival = IntervalEvaluation(validation_data=(x1, y1), interval=1) pred_sum = 0 for k in range(1): model = Sequential() model.add( Dense(int(dense1), input_shape=(dims, ), init='he_uniform', W_regularizer=regularizers.l1(0.0005))) model.add(Dropout(0.05)) # input dropout model.add(PReLU()) model.add(BatchNormalization()) model.add(Dropout(0.1)) model.add(Dense(int(dense2))) model.add(PReLU()) model.add(BatchNormalization()) model.add(Dropout(0.15)) model.add(Dense(nb_classes)) model.add(Activation('sigmoid')) model.compile(loss='binary_crossentropy', optimizer="adam") model.fit(x0, y0, nb_epoch=int(epochs), batch_size=128, verbose=0, callbacks=[ival]) preds = model.predict_proba(x1, batch_size=64, verbose=0)[:, 1] pred_sum += preds pred_average = pred_sum / (k + 1) del model loss = auc(y1[:, 1], pred_average) return loss