示例#1
0
def make_model():
    model = models.Sequential()
    model.add(
        layers.Convolution3D(16,
                             1,
                             3,
                             3,
                             input_shape=(1, 24, 128, 128),
                             activation='relu'))
    model.add(layers.Convolution3D(32, 1, 3, 3, activation='relu'))
    model.add(layers.MaxPooling3D(pool_size=(1, 2, 2)))
    model.add(layers.Convolution3D(32, 1, 3, 3, activation='relu'))
    model.add(layers.Convolution3D(64, 1, 3, 3, activation='relu'))
    model.add(layers.MaxPooling3D(pool_size=(1, 2, 2)))
    model.add(layers.Convolution3D(64, 1, 3, 3, activation='relu'))
    model.add(layers.Convolution3D(128, 1, 3, 3, activation='relu'))
    model.add(layers.MaxPooling3D(pool_size=(1, 2, 2)))
    model.add(layers.Convolution3D(128, 1, 3, 3, activation='relu'))
    model.add(layers.MaxPooling3D(pool_size=(1, 2, 2)))
    model.add(layers.Flatten())
    model.add(layers.Dense(512, activation='relu'))
    model.add(layers.Dropout(0.5))
    model.add(layers.Dense(2, activation='softmax'))
    model.compile(loss='categorical_crossentropy',
                  optimizer='adadelta',
                  metrics=['accuracy'])
    model.fit(trn_x,
              trn_y,
              batch_size=24,
              nb_epoch=10,
              verbose=1,
              validation_data=(val_x, val_y))
示例#2
0
def create_voxnet_model_small(input_shape, output_size):
    """
    Creates a small VoxNet.

    See: http://dimatura.net/publications/3dcnn_lz_maturana_scherer_icra15.pdf

    Args:
        input_shape (shape): Input-shape.
        output_size (int): Output-size.

    Returns:
        Model: A model.
    """

    #Trainable params: 301,378
    model = models.Sequential(name="C7-F32-P2-C5-F64-P2-D512")
    model.add(layers.Reshape(target_shape=input_shape + (1,), input_shape=input_shape))
    model.add(layers.Conv3D(32, (7, 7, 7), activation="relu"))
    model.add(layers.MaxPooling3D((4, 4, 4)))
    model.add(layers.Conv3D(64, (5, 5, 5), activation="relu"))
    model.add(layers.MaxPooling3D((2, 2, 2)))
    model.add(layers.Flatten())
    model.add(layers.Dense(512, activation="relu"))
    model.add(layers.Dense(output_size))

    return model
示例#3
0
    def __init__(self, shape):
        self.re_rate = 0.9
        self.model = models.Sequential()
        self.model.add(
            layers.Conv3D(16, (3, 3, 3),
                          kernel_regularizer=regularizers.l2(self.re_rate),
                          input_shape=shape))
        self.model.add(layers.ReLU())
        self.model.add(
            layers.Conv3D(16, (3, 3, 3),
                          kernel_regularizer=regularizers.l2(self.re_rate)))
        self.model.add(layers.ReLU())
        self.model.add(layers.MaxPooling3D((2, 2, 2)))
        self.model.add(layers.Dropout(rate=0.25))

        self.model.add(
            layers.Conv3D(32, (3, 3, 3),
                          kernel_regularizer=regularizers.l2(self.re_rate)))
        self.model.add(layers.ReLU())
        self.model.add(
            layers.Conv3D(32, (3, 3, 3),
                          kernel_regularizer=regularizers.l2(self.re_rate)))
        self.model.add(layers.ReLU())
        self.model.add(layers.MaxPooling3D((2, 2, 2)))
        self.model.add(layers.Dropout(rate=0.25))

        self.model.add(layers.Flatten())
        self.model.add(layers.Dense(16))
        self.model.add(layers.Dense(4, activation='softmax'))
示例#4
0
def net27():
    model = Sequential()

    # Inputs are (27,27,103)
    # Conv

    #model.add(L.Lambda(data_to_img, input_shape=(8), output_shape=(103,27,27,1)))
    model.add(
        L.Conv3D(32, (32, 4, 4),
                 activation='relu',
                 input_shape=(103, 27, 27, 1)))
    model.add(L.MaxPooling3D(pool_size=(1, 2, 2)))

    model.add(L.Conv3D(64, (32, 5, 5), activation='relu'))
    model.add(L.MaxPooling3D(pool_size=(1, 2, 2)))
    model.add(L.Dropout(.5))

    model.add(L.Conv3D(128, (32, 4, 4), activation='relu'))
    model.add(L.Dropout(.5))

    # Fully Connected
    model.add(L.Flatten())
    model.add(L.Dense(128, activation='relu'))
    #model.add(L.Conv2D(1,128,1 activation='relu'))
    model.add(L.Dropout(.5))
    model.add(L.Dense(9, activation='softmax'))
    #model.add(L.Conv2D(1,128,1 activation='softmax'))

    # Loss
    model.compile(optimizer='sgd',
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])

    plot_model(model, show_shapes=True, to_file='model.png')
    return model
示例#5
0
 def _pooling_function(self, inputs, pool_size, strides, padding,
                       data_format):
     input_real, input_imag = complex_to_real_imag(inputs)
     real_outputs = KL.MaxPooling3D(pool_size, strides, padding)(input_real)
     imag_outputs = KL.MaxPooling3D(pool_size, strides, padding)(input_imag)
     outputs = real_imag_to_complex(real_outputs, imag_outputs)
     return outputs
示例#6
0
def D3GenerateModel_old(n_filter=64, number_of_class=1, input_shape=(16,144,144,1),activation_last='sigmoid', metrics=['mse', 'acc', auc],loss='mse', optimizer='adam',dropout=0.5, init='glorot_uniform'):
    filter_size =16
    model = Sequential()
    #1 layer
    model.add(layers.Conv3D(filters=filter_size, input_shape=input_shape,  kernel_size=(2,2,2), strides=(1,1, 1), 
                                padding='same', activation='relu'))
    model.add(layers.Conv3D(filters=filter_size, input_shape=input_shape,  kernel_size=(2,2,2), strides=(1,1, 1), 
                                padding='same', activation='relu'))
    model.add(layers.MaxPooling3D((1, 2,2), strides=(1,2,2), padding='valid'))
    #2 layer
    for i in range(1,5):
        model.add(layers.Conv3D(filters=filter_size, kernel_size=(2,2,2), strides=(1,1,1), 
                                    padding='same', activation='relu'))
        model.add(layers.Conv3D(filters=filter_size*i, kernel_size=(2,2,2), strides=(1,1,1), 
                                    padding='same', activation='relu'))
        model.add(layers.MaxPooling3D((2, 2, 2), strides=(2, 2, 2), padding='valid'))
    model.add(layers.Flatten())
    model.add(layers.Dense(2048, activation='relu'))
    model.add(layers.Dropout(.5))
    model.add(layers.Dense(2048, activation='relu'))
    model.add(layers.Dropout(.5))
    model.add(layers.Dense(1, activation='linear', kernel_regularizer=l2(0.01), bias_regularizer=l2(0.01)))
    model.summary()
    model.compile(optimizer=keras.optimizers.sgd(lr=1e-4, nesterov=True),loss='hinge', metrics=metrics)#keras.optimizers.SGD
    return model
示例#7
0
def getModel():
    img_input = layers.Input(shape=(256, 256, 47, 1))
    x = layers.Dropout(0.1)(img_input)
    x = layers.Conv3D(8, (7, 7, 5), activation='relu')(x)

    x = layers.MaxPooling3D(pool_size=(2, 2, 1))(x)
    x = layers.Conv3D(16, (5, 5, 3), activation='relu')(x)

    x = layers.MaxPooling3D(pool_size=(2, 2, 1))(x)
    x = layers.Conv3D(16, (5, 5, 3), activation='relu')(x)

    x = layers.MaxPooling3D(pool_size=(2, 2, 2))(x)
    x = layers.Conv3D(32, (5, 5, 3), activation='relu')(x)
    x = layers.Conv3D(32, (3), activation='relu')(x)

    x = layers.MaxPooling3D(pool_size=(2, 2, 1))(x)
    x = layers.Conv3D(64, (3, 3, 1), activation='relu')(x)
    x = layers.Conv3D(64, (3, 3, 1), activation='relu')(x)

    x = layers.Dropout(0.5)(x)
    x = layers.Flatten()(x)

    x = layers.Dense(512, activation='relu')(x)

    x = layers.Dropout(0.5)(x)
    x = layers.Dense(4, activation='softmax')(x)

    model = Model(input=img_input, output=x)

    model.compile(loss=categorical_crossentropy,
                  optimizer=optimizers.RMSprop(lr=1e-4),
                  metrics=['accuracy'])

    print(model.summary())
    return model
示例#8
0
def D3GenerateModel(n_filter=16, number_of_class=2, input_shape=(16,144,144,1),activation_last='sigmoid', metrics=['mse', 'acc'],loss='mse', optimizer='adam',dropout=0.5, init='glorot_uniform'):
    filter_size =n_filter
    model = Sequential()
    model.add(layers.Conv3D(filters=filter_size, input_shape=input_shape,  kernel_size=(3,3,3), strides=(1,1, 1), 
                                padding='valid', activation='selu'))
    model.add(layers.Conv3D(filters=filter_size*2, kernel_size=(3,3,3), strides=(1, 2,2), 
                                padding='valid', activation='selu'))
    model.add(layers.MaxPooling3D((1, 2,2), padding='valid'))
    model.add(layers.Conv3D(filters=filter_size*2, kernel_size=(3,3,3), strides=(1,1,1), 
                                padding='valid', activation='selu'))
    model.add(layers.Conv3D(filters=filter_size*4, kernel_size=(3,3,3), strides=(1, 2,2), 
                                padding='valid', activation='selu'))
    model.add(layers.MaxPooling3D((1, 2,2), padding='valid'))
    model.add(layers.Conv3D(filters=filter_size*4, kernel_size=(3,3,3), strides=(1,1, 1), 
                                padding='valid', activation='selu'))
    model.add(layers.Conv3D(filters=filter_size*8, kernel_size=(3,3,3), strides=(1, 2,2), 
                                padding='valid', activation='selu'))
    model.add(layers.MaxPooling3D((1,2, 2), padding='same'))
    model.add(layers.Conv3D(filters=filter_size*16, kernel_size=(3,3,3), strides=(1,1, 1), 
                                padding='same', activation='selu'))
    model.add(layers.Conv3D(filters=filter_size*32, kernel_size=(3,3,3), strides=(2,2, 2), 
                                padding='same', activation='selu'))
    
    #model.add(layers.MaxPooling2D((2, 2), padding='valid'))
    model.add(layers.GlobalMaxPooling3D())
    #Encoder
    model.add(layers.Dense(512, activation='selu'))
    model.add(keras.layers.Dropout(0.5))
    model.add(layers.Dense(256, activation='selu'))
    model.add(layers.Dense(2, activation='softmax'))#, kernel_regularizer=l2(0.01), bias_regularizer=l2(0.01)))
    model.summary()
    model.compile(optimizer=keras.optimizers.adam(lr=2e-6),loss='categorical_crossentropy', metrics=metrics)
    return model
def irn2_stem(input_tensor):
    x = layers.Conv3D(32, (3,3,3), padding='valid', strides=2, activation='relu')(input_tensor)
    x = layers.Conv3D(32, (3,3,3), padding='valid', activation='relu')(x)
    x = layers.Conv3D(64, (3,3,3), padding='same', activation='relu')(x)
   
    mp_1 = layers.MaxPooling3D((3,3,3), strides=2)(x)
    x = layers.Conv3D(96, (3,3,3), padding='valid', strides=2, activation='relu')(x)
    x = layers.concatenate([mp_1, x], axis=-1)

    b_1 = layers.Conv3D(64, (1,1,1), padding='same', activation='relu')(x)
    b_1 = layers.Conv3D(96, (3,3,3), padding='valid', activation='relu')(b_1)

    b_2 = layers.Conv3D(64, (1,1,1), padding='same', activation='relu')(x)
    b_2 = layers.Conv3D(64, (7,1,1), padding='same')(b_2)
    b_2 = layers.Conv3D(64, (1,7,1), padding='same')(b_2)
    b_2 = layers.Conv3D(64, (1,1,7), padding='same', activation='relu')(b_2)
    b_2 = layers.Conv3D(96, (3,3,3), padding='valid', activation='relu')(b_2)
    cat_2 = layers.concatenate([b_1, b_2], axis=-1)

    b_3 = layers.Conv3D(192, (3,3,3), padding='valid', strides=2, activation='relu')(cat_2)
    b_4 = layers.MaxPooling3D((3,3,3), padding='valid', strides=2)(cat_2)

    out = layers.concatenate([b_3, b_4], axis=-1)

    return out
示例#10
0
def create_3DCNN_model(input_shape):
    """Build architecture of the model"""
    model = Sequential()
    model.add(layers.Conv3D(32, (3, 3, 3), input_shape=input_shape,
                            activation="relu", padding="same"))
    model.add(layers.Conv3D(64, (3, 3, 3), activation="selu", padding="same"))
    model.add(layers.MaxPooling3D(pool_size=(3, 3, 3)))
    model.add(layers.Conv3D(64, (3, 3, 3), activation="selu", padding="same"))
    model.add(layers.Conv3D(64, (3, 3, 3), activation="selu", padding="same"))
    model.add(layers.MaxPooling3D(pool_size=(2, 2, 2)))
    model.add(layers.Conv3D(128, (3, 3, 3), activation="selu", padding="same"))
    model.add(layers.MaxPooling3D(pool_size=(2, 2, 2), padding="same"))
    model.add(layers.Flatten())
    model.add(layers.Dense(64, activation="selu",
                           kernel_regularizer=regularizers.l2(0.001)))
    model.add(layers.Dropout(0.2))
    model.add(layers.Dense(32, activation="selu"))
    model.add(layers.Dense(10, activation="softmax"))

    # Create model
    model.compile(optimizer=tf.train.AdamOptimizer(),
                  loss="categorical_crossentropy",
                  metrics=["accuracy"])

    return model
def CNN_Classification():
    image_channels = 1

    model = models.Sequential()

    model.add(
        layers.Conv3D(32, (3, 3, 3),
                      activation='relu',
                      input_shape=(32, 32, 32, image_channels)))
    model.add(layers.MaxPooling3D((2, 2, 2)))

    model.add(layers.Conv3D(64, (3, 3, 3), activation='relu'))
    model.add(layers.MaxPooling3D((2, 2, 2)))
    model.add(layers.Dropout(0.2))

    model.add(layers.Flatten())

    model.add(layers.Dense(216, activation='relu'))
    model.add(layers.Dropout(0.5))

    model.add(layers.Dense(108, activation='relu'))
    model.add(layers.Dropout(0.5))

    model.add(
        layers.Dense(1, kernel_initializer='normal',
                     activation='sigmoid'))  ##Couche de sortie

    #model.summary()

    model.compile(loss='binary_crossentropy',
                  optimizer=optimizers.Adam(lr=1e-3))

    return model
示例#12
0
    def _new_model(self):
        inputs = layers.Input(shape=self.input_size)

        conv1 = layers.Conv3D(16, (3, 3, 3), activation='relu',
                              padding='same')(inputs)
        conv1 = layers.Conv3D(16, (3, 3, 3), activation='relu',
                              padding='same')(conv1)
        pool1 = layers.MaxPooling3D(pool_size=(2, 2, 2))(conv1)

        conv2 = layers.Conv3D(32, (3, 3, 3), activation='relu',
                              padding='same')(pool1)
        conv2 = layers.Conv3D(32, (3, 3, 3), activation='relu',
                              padding='same')(conv2)
        pool2 = layers.MaxPooling3D(pool_size=(2, 2, 2))(conv2)

        conv3 = layers.Conv3D(64, (3, 3, 3), activation='relu',
                              padding='same')(pool2)
        conv3 = layers.Conv3D(64, (3, 3, 3), activation='relu',
                              padding='same')(conv3)
        pool3 = layers.MaxPooling3D(pool_size=(2, 2, 2))(conv3)

        conv4 = layers.Conv3D(128, (3, 3, 3),
                              activation='relu',
                              padding='same')(pool3)
        conv4 = layers.Conv3D(128, (3, 3, 3),
                              activation='relu',
                              padding='same')(conv4)

        up5 = layers.Conv3DTranspose(64, (2, 2, 2),
                                     strides=(2, 2, 2),
                                     padding='same')(conv4)
        conc5 = layers.concatenate([up5, conv3])
        conv5 = layers.Conv3D(64, (3, 3, 3), activation='relu',
                              padding='same')(conc6)
        conv5 = layers.Conv3D(64, (3, 3, 3), activation='relu',
                              padding='same')(conv5)

        up6 = layers.Conv3DTranspose(32, (2, 2, 2),
                                     strides=(2, 2, 2),
                                     padding='same')(conv5)
        conc6 = layers.concatenate([up6, conv2])
        conv6 = layers.Conv3D(32, (3, 3, 3), activation='relu',
                              padding='same')(conc6)
        conv6 = layers.Conv3D(32, (3, 3, 3), activation='relu',
                              padding='same')(conv6)

        up7 = layers.Conv3DTranspose(16, (2, 2, 2),
                                     strides=(2, 2, 2),
                                     padding='same')(conv6)
        conc7 = layers.concatenate([up7, conv1])
        conv7 = layers.Conv3D(16, (3, 3, 3), activation='relu',
                              padding='same')(conc7)
        conv7 = layers.Conv3D(16, (3, 3, 3), activation='relu',
                              padding='same')(conv7)

        outputs = layers.Conv3D(1, (1, 1, 1), activation='sigmoid')(conv7)

        self.model = Model(inputs=inputs, outputs=outputs)
示例#13
0
    def __init__(self, shape):
        self.re_rate = 0.9
        self.model = models.Sequential()
        self.model.add(layers.Conv3D(16, (3, 3, 3), activation='relu',
                                     kernel_regularizer=regularizers.l2(self.re_rate), input_shape=shape))
        self.model.add(layers.BatchNormalization())
        self.model.add(layers.MaxPooling3D((2, 2, 2)))

        self.model.add(layers.Conv3D(32, (3, 3, 3), activation='relu', 
                                     kernel_regularizer=regularizers.l2(self.re_rate)))
        self.model.add(layers.BatchNormalization())
        self.model.add(layers.MaxPooling3D((2, 2, 2)))

        self.model.add(layers.Conv3D(64, (3, 3, 3), activation='relu',
                                     kernel_regularizer=regularizers.l2(self.re_rate)))
        self.model.add(layers.BatchNormalization())
        self.model.add(layers.MaxPooling3D((2, 2, 2)))

        self.model.add(layers.Conv3D(128, (3, 3, 3), activation='relu',
                                     kernel_regularizer=regularizers.l2(self.re_rate)))
        self.model.add(layers.BatchNormalization())
        self.model.add(layers.MaxPooling3D((2, 2, 2)))
        
        
        self.model.add(layers.Flatten())
        
        # three rate from 0.8 to 0.6 and the first dense from 64 to 128,
        # while dropout rate between dense changed from 0.2 to 0.5
        # then, on one side, it can't overfit all train data, while the acc of val dataset
        # can be reduce when the train dataset's acc is too high
        
        # four change: the first dropout's rate from 0.6 to 0.7
        # the sencond Dense's kernel number from 32 to 64
        # overfit to train set but not up to 1 just 92%
        # fifth change: add conv and BN and change the first dropout's rate from 0.6 to 0.7
        # acc at train dataset is above 98%, while it's just 63% at val dataset
        # sixth: double these conv with kernel size =(1, 1, 1), and change the second dropout rate from 0.5 to 0.6
        # acc at val dataset is 64.4%
        # seventh: change the kernel size from (1, 1, 1) to (3, 3, 3) and add padding='same'
        # after change, this becomes come overfit even train dataset
        # thus change network to sixth and then double the conv kernel number and change the first 
        # dropout rate from 0.7 to 0.8 and change the second rate from 0.6 to 0.7, find this can't overfit
        # change the second dropout rate from 0.7 to  0.6, can't overfit
        # next, change first dropout rate from 0.8 to 0.7 with the second dropout rate is 0.6
        
        self.model.add(layers.Dropout(rate=0.7))

        self.model.add(layers.Dense(128, activation='relu'))
        # one change add dropout rate = 0.3 can't overfit
        # two change change rate from 0.3 to 0.2, can't overfit but the train set's
        # acc is close to val set
        self.model.add(layers.Dropout(rate=0.6))
        # end
        self.model.add(layers.Dense(64, activation='relu'))
        # self.model.add(layers.Dense(8, activation='relu'))
        # self.model.add(layers.Dense(3, activation='softmax'))
        self.model.add(layers.Dense(1, activation='sigmoid'))
示例#14
0
    def __init__(self, shape):
        self.re_rate = 0.9
        self.inputs = layers.Input(shape=shape)

        self.f_block = layers.Conv3D(4, (3, 3, 3),
                                     activation='relu',
                                     kernel_regularizer=regularizers.l2(
                                         self.re_rate),
                                     padding='same')(self.inputs)
        self.bn = layers.BatchNormalization()(self.f_block)
        self.mp1 = layers.MaxPooling3D((2, 2, 2))(self.bn)

        self.f_block1 = layers.Conv3D(8, (3, 3, 3),
                                      activation='relu',
                                      kernel_regularizer=regularizers.l2(
                                          self.re_rate),
                                      padding='same')(self.mp1)
        self.bn = layers.BatchNormalization()(self.f_block1)

        self.mp2 = layers.MaxPooling3D((2, 2, 2))(self.bn)

        self.f_block2 = layers.Conv3D(8, (3, 3, 3),
                                      activation='relu',
                                      kernel_regularizer=regularizers.l2(
                                          self.re_rate),
                                      padding='same')(self.mp2)
        self.f_block2 = layers.BatchNormalization()(self.f_block2)

        self.b_back2 = layers.Conv3D(8, (3, 3, 3),
                                     activation='relu',
                                     kernel_regularizer=regularizers.l2(
                                         self.re_rate),
                                     padding='same')(self.f_block2)
        self.b_back2 = layers.BatchNormalization()(self.b_back2)

        self.b_back2 = layers.Conv3D(
            8, (3, 3, 3),
            activation='relu',
            kernel_regularizer=regularizers.l2(self.re_rate),
            padding='same')(layers.UpSampling3D((2, 2, 2))(self.f_block2))
        self.b_back2 = layers.BatchNormalization()(self.b_back2)

        self.cat2 = layers.concatenate([self.f_block1, self.b_back2])
        self.bn = layers.BatchNormalization()(self.cat2)

        self.b_back1 = layers.Conv3D(
            8, (3, 3, 3),
            activation='relu',
            kernel_regularizer=regularizers.l2(self.re_rate),
            padding='same')(layers.UpSampling3D((2, 2, 2))(self.bn))
        self.b_back1 = layers.BatchNormalization()(self.b_back1)

        self.gb = layers.GlobalAveragePooling3D()(self.b_back1)
        self.drop = layers.Dropout(rate=0.9)(self.gb)

        self.dense = layers.Dense(1, activation='sigmoid')(self.drop)
        self.model = keras.Model(input=[self.inputs], output=self.dense)
def vanilla_base_elu(input_tensor):
    x = layers.Conv3D(32, (3,3,3), activation='elu')(input_tensor)
    x = layers.MaxPooling3D((2,2,2))(x)
    x = layers.Conv3D(64, (3,3,3), activation='elu')(x)
    x = layers.MaxPooling3D((2,2,2))(x)
    x = layers.Conv3D(128, (3,3,3), activation='elu')(x)
    x = layers.MaxPooling3D((2,2,2))(x)
    x = layers.Conv3D(256, (3,3,3), activation='elu')(x)
    x = layers.MaxPooling3D((2,2,2))(x)
    x = layers.Flatten()(x)

    return x
示例#16
0
def CNN():
    num_channels = 1
    num_mask_channels = 1
    img_shape = (None, None, None, 1)
    
    inputs = Input(shape = img_shape)
    conv1 = layers.Conv3D(32, 3, padding='same')(inputs)
    conv1 = layers.BatchNormalization()(conv1)
    conv1 = Activation('relu')(conv1)
    conv1 = layers.Conv3D(32, 3, padding='same')(conv1)
    conv1 = layers.BatchNormalization()(conv1)
    conv1 = Activation('relu')(conv1)
    pool1 = layers.MaxPooling3D(pool_size=(2, 2, 2))(conv1)
    
    conv2 = layers.Conv3D(64, 3, padding='same')(pool1)
    conv2 = layers.BatchNormalization()(conv2)
    conv2 = Activation('relu')(conv2)
    conv2 = layers.Conv3D(64, 3, padding='same')(conv2)
    conv2 = layers.BatchNormalization()(conv2)
    conv2 = Activation('relu')(conv2)
    pool2 = layers.MaxPooling3D(pool_size=(2, 2, 2))(conv2)

    conv3 = layers.Conv3D(128, 3, padding='same')(pool2)
    conv3 = layers.BatchNormalization()(conv3)
    conv3 = Activation('relu')(conv3)
    conv3 = layers.Conv3D(128, 3, padding='same')(conv3)
    conv3 = layers.BatchNormalization()(conv3)
    conv3 = Activation('relu')(conv3)
    conv3 =  layers.UpSampling3D(size=(2, 2, 2))(conv3)

    up4  = layers.concatenate([conv3, conv2])
    conv4 = layers.Conv3DTranspose(64, 3, padding='same')(up4)
    conv4 = layers.BatchNormalization()(conv4)
    conv4 = Activation('relu')(conv4)
    conv4 = layers.Conv3DTranspose(64, 3, padding='same')(conv4)
    conv4 = layers.BatchNormalization()(conv4)##conv ou crop
    conv4 = Activation('relu')(conv4)
    conv4 = layers.Conv3DTranspose(64, 1, padding='same')(conv4)
    conv4 =  layers.UpSampling3D(size=(2, 2, 2))(conv4)

    up5  = layers.concatenate([conv4, conv1])
    conv5 = layers.Conv3DTranspose(32, 3, padding='same')(up5)
    conv5 = layers.BatchNormalization()(conv5)
    conv5 = Activation('relu')(conv5)
    conv5 = layers.Conv3DTranspose(32, 3, padding='same')(conv5)
    conv5 = layers.BatchNormalization()(conv5)##conv ou crop
    conv5 = Activation('relu')(conv5)
    conv5 = layers.Conv3DTranspose(1, 1, padding='same', activation='relu')(conv5)

    model = Model(inputs=inputs, outputs=conv5)
    #model.summary()

    return(model)
示例#17
0
def load_model():
    input_tensor = Input(shape=(SequenceLength, IMSIZE[0], IMSIZE[1], 3))

    x = layers.ConvLSTM2D(32,
                          kernel_size=(7, 7),
                          padding='valid',
                          return_sequences=True)(input_tensor)
    x = layers.Activation('relu')(x)
    x = layers.MaxPooling3D(pool_size=(1, 2, 2))(x)

    x = layers.ConvLSTM2D(64,
                          kernel_size=(5, 5),
                          padding='valid',
                          return_sequences=True)(x)
    x = layers.MaxPooling3D(pool_size=(1, 2, 2))(x)

    x = layers.ConvLSTM2D(96,
                          kernel_size=(3, 3),
                          padding='valid',
                          return_sequences=True)(x)
    x = layers.Activation('relu')(x)
    x = layers.ConvLSTM2D(96,
                          kernel_size=(3, 3),
                          padding='valid',
                          return_sequences=True)(x)
    x = layers.Activation('relu')(x)
    x = layers.ConvLSTM2D(96,
                          kernel_size=(3, 3),
                          padding='valid',
                          return_sequences=True)(x)
    x = layers.MaxPooling3D(pool_size=(1, 2, 2))(x)

    x = layers.Dense(320)(x)
    x = layers.Activation('relu')(x)
    x = layers.Dropout(0.5)(x)

    out_shape = x.get_shape().as_list()
    x = layers.Reshape(
        (SequenceLength, out_shape[2] * out_shape[3] * out_shape[4]))(x)
    x = layers.Bidirectional(layers.LSTM(64, return_sequences=True),
                             merge_mode='concat')(x)
    x = layers.Dropout(0.5)(x)
    x = layers.Flatten()(x)
    x = layers.Dense(128, activation='relu')(x)
    output_tensor = layers.Dense(N_CLASSES, activation='softmax')(x)

    model = Model(input_tensor, output_tensor)
    model.compile(loss='categorical_crossentropy',
                  optimizer='sgd',
                  metrics=['accuracy'])
    return model
def naive_inception(input_shape=(64,64,64,2)):
    input_tensor = tensor_input(input_shape)
    i1 = naive_inception_block(input_tensor, 16,
                                              8, 16,
                                              8, 16,
                                             16)
    r1 = basic_reduction_block(i1, 16, 32,
                                   16, 24, 32)

    x = layers.Conv3D(128, (3,3,3), activation='relu')(r1)
    x = layers.MaxPooling3D((2,2,2))(x)


    i2 = naive_inception_block(x            , 32,
                                              16, 32,
                                              16, 32,
                                             32)
    r2 = basic_reduction_block(i2, 32, 64,
                                   32, 50, 64)

    n = layers.Conv3D(512, (3,3,3), activation='relu')(r2)
    n = layers.MaxPooling3D((2,2,2))(n)
    n = layers.Conv3D(512, (2,2,2), activation='relu')(n)
    n = layers.Flatten()(n)
    n = layers.Dropout(0.2)(n)

    n = layers.Dense(1024, activation='relu')(n)
    n = layers.Dense(512, activation='relu')(n)
    n = layers.Dense(128, activation='relu')(n)
    n = layers.Dense(64, activation='relu')(n)

    density = head(n, 'density')
    detvel = head(n, 'detvel')
    detpres = head(n, 'detpres')
    dipole = head(n, 'dipole')
    energy = head(n, 'energy')
    hof = head(n, 'hof')
    temp = head(n, 'temp')
    gap = head(n, 'gap')

    out_list = [density, detvel, detpres,
                dipole, energy, hof,
                temp, gap]

    model = models.Model(input_tensor, out_list)
    model.compile(optimizer='adam',
                  loss=['mse']*len(out_list),
                  loss_weights=loss_weights,
                  metrics=['mae'])

    return model
示例#19
0
文件: conv.py 项目: ETVP/AD-diagnosis
    def __init__(self, shape):
        self.re_rate = 0.9
        dr = 0.9
        self.inputs = layers.Input(shape=shape)

        self.f_block = layers.Conv3D(4, (3, 3, 3), activation='relu',
                                     kernel_regularizer=regularizers.l2(self.re_rate),
                                     padding='same')(self.inputs)
        self.mp1 = layers.MaxPooling3D((2, 2, 2))(self.f_block)
        self.bn1 = layers.BatchNormalization()(self.mp1)

        self.f_block1 = layers.Conv3D(16, (3, 3, 3), activation='relu',
                                      kernel_regularizer=regularizers.l2(self.re_rate),
                                      padding='same')(self.bn1)
        self.mp2 = layers.MaxPooling3D((2, 2, 2))(self.f_block1)
        self.bn2 = layers.BatchNormalization()(self.mp2)

        self.f_block2 = layers.Conv3D(32, (3, 3, 3), activation='relu',
                                      kernel_regularizer=regularizers.l2(self.re_rate),
                                      padding='same')(self.bn2)
        self.mp3 = layers.MaxPooling3D((2, 2, 2))(self.f_block2)
        self.bn3 = layers.BatchNormalization()(self.mp3)

        self.f_block3 = layers.Conv3D(64, (3, 3, 3), activation='relu',
                                      kernel_regularizer=regularizers.l2(self.re_rate),
                                      padding='same')(self.bn3)
        self.f_block3 = layers.BatchNormalization()(self.f_block3)

        self.b_back3 = layers.Conv3D(128, (3, 3, 3), activation='relu',
                                     kernel_regularizer=regularizers.l2(self.re_rate),
                                     padding='same')(self.f_block3)
        self.b_back3 = layers.BatchNormalization()(self.b_back3)

        self.b_back2 = layers.Conv3D(64, (3, 3, 3), activation='relu',
                                     kernel_regularizer=regularizers.l2(self.re_rate),
                                     padding='same')(layers.UpSampling3D((2, 2, 2))(self.b_back3))
        self.b_back2 = layers.BatchNormalization()(self.b_back2)

        self.b_back1 = layers.Conv3D(32, (3, 3, 3), activation='relu',
                                     kernel_regularizer=regularizers.l2(self.re_rate),
                                     padding='same')(layers.UpSampling3D((2, 2, 2))(self.b_back2))
        self.b_back1 = layers.BatchNormalization()(self.b_back1)

        self.gb = layers.GlobalAveragePooling3D()(self.b_back1)
        self.dr = layers.Dropout(rate=dr)(self.gb)
        self.dense = layers.Dense(1, activation='sigmoid')(self.dr)

        self.model = keras.Model(input=self.inputs, output=self.dense)
def PrimaryCap(inputs, dim_capsule, n_channels, kernel_size, strides, padding):
    """
    Apply Conv2D `n_channels` times and concatenate all capsules
    :param inputs: 4D tensor, shape=[None, width, height, channels]
    :param dim_capsule: the dim of the output vector of capsule
    :param n_channels: the number of types of capsules
    :return: output tensor, shape=[None, num_capsule, dim_capsule]
    """
    outputC = layers.Conv3D(filters=dim_capsule * n_channels,
                            kernel_size=kernel_size,
                            strides=strides,
                            padding=padding,
                            name='primarycap_conv2d')(inputs)
    conv1Caps = layers.MaxPooling3D(pool_size=(2, 3, 4),
                                    strides=None,
                                    padding='valid',
                                    data_format=None)(outputC)
    conv1Norm = layers.BatchNormalization(epsilon=0.001,
                                          axis=-1,
                                          momentum=0.99,
                                          weights=None,
                                          beta_init='zero',
                                          gamma_init='one',
                                          gamma_regularizer=None,
                                          beta_regularizer=None)(conv1Caps)
    outputs = layers.Reshape(target_shape=[-1, dim_capsule],
                             name='primarycap_reshape')(conv1Norm)
    outputsDO = layers.Dropout(0.5)(outputs)
    return layers.Lambda(squash, name='primarycap_squash')(outputsDO)
示例#21
0
def DenseNet3D(blocks, input_shape=None, classes=1000):
    img_input = layers.Input(shape=input_shape)
    bn_axis = 4

    # Conv Layer 1
    x = layers.ZeroPadding3D(padding=((3, 3), (3, 3), (3, 3)))(img_input)
    x = layers.Conv3D(64, 7, strides=2, use_bias=False, name='conv1/conv')(x)
    x = layers.BatchNormalization(axis=bn_axis,
                                  epsilon=1.001e-5,
                                  name='conv1/bn')(x)
    x = layers.Activation('relu', name='conv1/relu')(x)
    x = layers.ZeroPadding3D(padding=((1, 1), (1, 1), (1, 1)))(x)
    x = layers.MaxPooling3D(3, strides=2, name='pool1')(x)

    # Dense Blocks
    for i, block in enumerate(blocks):
        x = dense_block3D(x, block, name='conv' + str(i + 2))
        if i < len(blocks) - 1:
            x = transition_block3D(x, 0.5, name='pool' + str(i + 2))

    # Final Layers
    x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5, name='bn')(x)
    x = layers.GlobalAveragePooling3D(name='avg_pool')(x)
    x = layers.Dense(classes, activation='softmax', name='fc')(x)

    # Create model
    model = models.Model(img_input, x, name='densenet3D')
    return model
示例#22
0
def build_model(model_type='regression', conv_layer_sizes=(16, 16, 16), dense_layer_size=16, dropout_rate=0.5):
    """
    """
    # make sure requested model type is valid
    if model_type not in ['regression', 'classification']:
        print('Requested model type {0} is invalid'.format(model_type))
        sys.exit(1)
        
    # instantiate a 3D convnet
    model = models.Sequential()
    model.add(layers.Conv3D(filters=conv_layer_sizes[0], kernel_size=(3, 3, 3), input_shape=(16, 16, 16, 14)))
    model.add(layers.Activation(activation='relu'))
    for c in conv_layer_sizes[1:]:
        model.add(layers.Conv3D(filters=c, kernel_size=(3, 3, 3)))
        model.add(layers.Activation(activation='relu'))
    model.add(layers.MaxPooling3D(pool_size=(2, 2, 2)))
    model.add(layers.Flatten())
    model.add(layers.Dropout(rate=dropout_rate))
    model.add(layers.Dense(units=dense_layer_size, activation='relu'))
    model.add(layers.Dropout(rate=dropout_rate))
    
    # the last layer is dependent on model type
    if model_type == 'regression':
        model.add(layers.Dense(units=1))
    else:
        model.add(layers.Dense(units=3, activation='softmax'))
        model.compile(loss='categorical_crossentropy', optimizer=optimizers.RMSprop(lr=0.0001),
                      metrics=['accuracy'])
    
    return model
示例#23
0
def create_voxnet_model_homepage(input_shape, output_size):
    """
    Creates a small VoxNet.

    See: http://dimatura.net/publications/3dcnn_lz_maturana_scherer_icra15.pdf

    Note: This is the latest model that the VoxNet-authors used.

    Args:
        input_shape (shape): Input-shape.
        output_size (int): Output-size.

    Returns:
        Model: A model.
    """

    # Trainable params: 916,834
    model = models.Sequential(name="VoxNetHomepage")
    model.add(layers.Reshape(target_shape=input_shape + (1,), input_shape=input_shape))
    model.add(layers.Conv3D(32, (5, 5, 5), strides=(2, 2, 2), activation="relu"))
    model.add(layers.Conv3D(32, (3, 3, 3), strides=(1, 1, 1), activation="relu"))
    model.add(layers.MaxPooling3D((2, 2, 2)))
    model.add(layers.Flatten())
    model.add(layers.Dense(128, activation="relu"))
    model.add(layers.Dense(output_size))

    return model
示例#24
0
def MaxPooling3D(pool_size=(2, 2, 2),
                 strides=None,
                 padding='valid',
                 data_format='channels_first'):
    return kl.MaxPooling3D(pool_size,
                           strides=strides,
                           padding=padding,
                           data_format=data_format)
示例#25
0
def D3GenerateModel(n_filter=16, number_of_class=1, input_shape=(16,144,144,1),activation_last='softmax', metrics=['mse', 'acc', dice_coef, recall_at_thresholds, precision_at_thresholds], loss='categorical_crossentropy', dropout=0.05, init='glorot_uniform', two_output=False):
    #init = initializers.VarianceScaling(scale=1.0, mode='fan_in', distribution='normal', seed=None)
    filter_size =n_filter
    input_x = layers.Input(shape=input_shape,name='Input_layer', dtype = 'float32')
    #1 level
    x = layers.Conv3D(filters=filter_size, kernel_size=(5,5,5), strides = (1,1,1), kernel_initializer=init, padding='same')(input_x)
    x = cyclical_learning_rate.SineReLU()(x)
    x = layers.Conv3D(filters=filter_size, kernel_size=(5,5,5), strides=(1,1, 1), 
                                        padding='same',kernel_initializer=init)(x)
    x = cyclical_learning_rate.SineReLU()(x)
    x = layers.MaxPooling3D(pool_size=(2,2,2), padding='same')(x)
    #2 level
    conv_list = []
    counter = 0
    x = layers.Conv3D(filters=filter_size*2, kernel_size=(3,3,3), strides=(1,1, 1), 
                                        padding='same',kernel_initializer=init)(x)
    x = cyclical_learning_rate.SineReLU()(x)
    x = layers.Conv3D(filters=filter_size*2, kernel_size=(3,3,3), strides=(1,1, 1), 
                                        padding='same',kernel_initializer=init)(x)
    x = cyclical_learning_rate.SineReLU()(x)
    x = layers.AveragePooling3D(pool_size=(1,2,2), padding='same')(x)
    x = layers.UpSampling3D(size=(1,2,2))(x)
    for index ,kernel_sizes in enumerate([
                                [(1,3,3), (3,3,1)], #Changed [(1,3,3), (1,1,3)]
                                [(3,3,3), (3,1,3)], #Changed [(3,3,3), (3,1,3)]
                                [(3,3,1), (3,3,3), (1,3,3)] #Changed [(3,3,1), (1,3,1)]
                                ]):
        for kernel_size in (kernel_sizes):
            x = layers.Conv3D(filters=(filter_size*4), kernel_size=kernel_size, kernel_initializer=init, strides =(1,1,1), padding='same', name='Conv3D_%s' % (counter))(x)
            x = layers.BatchNormalization()(x)
            x = cyclical_learning_rate.SineReLU()(x)
            counter = counter+1
        conv_list.append(x)
    x = layers.concatenate(conv_list)
    x = layers.Conv3D(filters=filter_size*8, kernel_size=(3,3,3), strides=(2,2, 2), kernel_initializer=init,
                        padding='same')(x)
    x = layers.BatchNormalization()(x)
    x = cyclical_learning_rate.SineReLU()(x)
    #x = layers.MaxPooling3D(pool_size=(2,2, 2))(x)
    x = layers.Reshape(target_shape=[4,-1, filter_size*8])(x)
    x = layers.Conv2D(filters=filter_size*8, kernel_size=(1,1296), kernel_initializer=init, strides=(1,1296))(x)
    x = layers.BatchNormalization()(x)
    x = cyclical_learning_rate.SineReLU()(x)
    x = layers.Reshape(target_shape=[filter_size*8,-1])(x)
    x = layers.Conv1D(filters=2, kernel_size=filter_size*8, strides=filter_size*8, kernel_initializer=init)(x)
    x = layers.Softmax()(x)
    y = layers.Flatten()(x)
    #Classification    
    model = Model(inputs=input_x, outputs=y)
    #optimizer = tf.contrib.opt.AdamWOptimizer(weight_decay=0.000001,lr=lr)
    #keras.optimizers.SGD(lr=lr, momentum=0.90, decay=decay, nesterov=False)
    #opt_noise = add_gradient_noise(optimizers.Adam)
    #optimizer = 'Adam'#opt_noise(lr, amsgrad=True)#, nesterov=True)#opt_noise(lr, amsgrad=True)
    import yogi
    optimizer = yogi.Yogi(lr=lr) 
    #optimizer=optimizers.adam(lr, amsgrad=True)
    model.compile(optimizer=optimizer,loss=loss, metrics=metrics)#categorical_crossentropy
    return model
def reduced_irn2_stem(input_tensor):
    x = layers.Conv3D(32, (3,3,3), padding='valid', strides=1, activation='relu')(input_tensor)
    x = layers.Conv3D(32, (3,3,3), padding='valid', activation='relu')(x)
    x = layers.Conv3D(64, (3,3,3), padding='same', activation='relu')(x)

    mp_1 = layers.MaxPooling3D((3,3,3), strides=2)(x)
    x = layers.Conv3D(96, (3,3,3), padding='valid', strides=2, activation='relu')(x)
    out = layers.concatenate([mp_1, x], axis=-1)
   
    return out
示例#27
0
 def __init__(self, shape):
     self.re_rate = 0.9
     model = models.Sequential()
     model.add(layers.Conv3D(16, (3, 3, 3), activation='relu', input_shape=shape,
                             kernel_regularizer=regularizers.l2(self.re_rate)))
     model.add(layers.MaxPooling3D((6, 6, 6)))
     model.add(layers.Flatten())
     model.add(layers.Dense(16, activation='relu'))
     model.add(layers.Dense(16, activation='relu'))
     model.add(layers.Dense(8, activation='relu'))
     model.add(layers.Dense(5, activation='softmax'))
     self.model = model
示例#28
0
    def single_channel(self, input):
        conv1 = layers.Conv3D(4, (5, 6, 5), activation="relu",
                                   kernel_regularizer=regularizers.l2(self.re_rate))(input)
        conv2 = layers.Conv3D(8, (3, 3, 3), activation='relu',
                                   kernel_regularizer=regularizers.l2(self.re_rate))(conv1)
        mp_1 = layers.MaxPooling3D((2, 2, 2))(conv2)

        conv3 = layers.Conv3D(16, (3, 3, 3), activation='relu',
                                   kernel_regularizer=regularizers.l2(self.re_rate))(mp_1)
        conv4 = layers.Conv3D(16, (3, 3, 3), activation='relu',
                                   kernel_regularizer=regularizers.l2(self.re_rate))(conv3)

        mp_2 = layers.MaxPooling3D((2, 2, 2))(conv4)

        conv5 = layers.Conv3D(16, (3, 1, 3), activation='relu',
                                   kernel_regularizer=regularizers.l2(self.re_rate))(mp_2)
        conv6 = layers.Conv3D(16, (3, 1, 3), activation='relu',
                              kernel_regularizer=regularizers.l2(self.re_rate))(conv5)
        gb = layers.GlobalAveragePooling3D()(conv6)
        dr = layers.Dropout(rate=self.dr)(gb)
        return dr
示例#29
0
    def __init__(self, shape):
        self.re_rate = 0.9
        self.model = models.Sequential()
        self.model.add(
            layers.Conv3D(16, (5, 5, 5),
                          kernel_regularizer=regularizers.l2(self.re_rate),
                          input_shape=shape))
        self.model.add(layers.BatchNormalization())
        self.model.add(layers.ReLU())
        self.model.add(layers.MaxPooling3D((2, 2, 2)))

        self.model.add(
            layers.Conv3D(32, (4, 4, 4),
                          kernel_regularizer=regularizers.l2(self.re_rate),
                          input_shape=shape))
        self.model.add(layers.BatchNormalization())
        self.model.add(layers.ReLU())
        self.model.add(layers.MaxPooling3D((2, 2, 2)))

        self.model.add(
            layers.Conv3D(64, (3, 3, 3),
                          kernel_regularizer=regularizers.l2(self.re_rate),
                          input_shape=shape))
        self.model.add(layers.BatchNormalization())
        self.model.add(layers.ReLU())
        self.model.add(layers.MaxPooling3D((2, 2, 2)))

        self.model.add(
            layers.Conv3D(128, (3, 3, 3),
                          kernel_regularizer=regularizers.l2(self.re_rate),
                          input_shape=shape))
        self.model.add(layers.BatchNormalization())
        self.model.add(layers.ReLU())
        self.model.add(layers.MaxPooling3D((2, 2, 2)))

        self.model.add(layers.Flatten())
        self.model.add(layers.Dense(16))
        self.model.add(layers.Dense(8))
        self.model.add(layers.Dropout(0.5))
        self.model.add(layers.Dense(2, activation='sigmoid'))
def irn2_ra(input_tensor):
    x = layers.Activation('relu')(input_tensor)

    b_1 = layers.MaxPooling3D((3,3,3), padding='valid', strides=2)(x)

    b_2 = layers.Conv3D(192, (3,3,3), padding='valid', strides=2, activation='relu')(x)

    b_3 = layers.Conv3D(128, (1,1,1), padding='same', activation='relu')(x)
    b_3 = layers.Conv3D(128, (3,3,3), padding='same', activation='relu')(b_3)
    b_3 = layers.Conv3D(192, (3,3,3), padding='valid', strides=2, activation='relu')(b_3)

    cat = layers.concatenate([b_1, b_2, b_3])

    return cat