model = Conv2D(64, (3, 3), padding='same', name='conv15')(model) model = Activation('relu', name='act15')(model) model = Conv2D(64, (3, 3), padding='same', name='conv16')(model) model = Activation('relu', name='act16')(model) model = Conv2D(64, (3, 3), padding='same', name='conv17')(model) model = Activation('relu', name='act17')(model) model = Conv2D(64, (3, 3), padding='same', name='conv18')(model) model = Activation('relu', name='act18')(model) model = Conv2D(64, (3, 3), padding='same', name='conv19')(model) model = Activation('relu', name='act19')(model) model = Conv2D(1, (3, 3), padding='same', name='conv20')(model) model = Activation('relu', name='act20')(model) res_img = model output_img = merge([res_img, input_img]) model = Model(input_img, output_img) model.load_weights('vdsr_model_edges.h5') img = image.load_img('./patch.png', grayscale=True, target_size=(41, 41, 1)) x = image.img_to_array(img) x = x.astype('float32') / 255 x = np.expand_dims(x, axis=0) pred = model.predict(x) test_img = np.reshape(pred, (41, 41)) imsave('test_img.png', test_img)
X_train = hyper_net.transform(X_train) X_test = hyper_net.transform(X_test) inp = Input((X_train.shape[1],)) fc = Dense(n_class)(inp) model = Activation('softmax')(fc) model = Model(inp, model) model.compile(loss='categorical_crossentropy', metrics=['accuracy'], optimizer='Adadelta') callbacks = [cm.custom_stopping(value=cm.loss, verbose=2)] model.fit(X_train, y[train_idx], batch_size=len(X_train), epochs=4*cm.n_ep,#The drawback of the method is that it requires more iterations to converge (loss <= cm.loss) verbose=0, callbacks=callbacks, validation_data=(X_train, y[train_idx])) y_pred = model.predict(X_test) y_pred = np.argmax(y_pred, axis=1) y_true = np.argmax(y[test_idx], axis=1) acc_fold = accuracy_score(y_true, y_pred) avg_acc.append(acc_fold) recall_fold = recall_score(y_true, y_pred, average='macro') avg_recall.append(recall_fold) f1_fold = f1_score(y_true, y_pred, average='macro') avg_f1.append(f1_fold) print('Accuracy[{:.4f}] Recall[{:.4f}] F1[{:.4f}] at fold[{}]'.format(acc_fold, recall_fold, f1_fold, i)) print('______________________________________________________')
model = Activation('relu', name='act17')(model) model = Conv2D(64, (3, 3), padding='same', name='conv18')(model) model = Activation('relu', name='act18')(model) model = Conv2D(64, (3, 3), padding='same', name='conv19')(model) model = Activation('relu', name='act19')(model) model = Conv2D(1, (3, 3), padding='same', name='conv20')(model) # model = Activation('relu', name='act20')(model) res_img = model output_img = add([res_img, input_img]) model = Model(input_img, output_img) model.load_weights('checkpoints2/vdsr-200-32.21.hdf5') pred = model.predict(data_input, batch_size=1) sess = tf.InteractiveSession() print(sess.run(PSNR(data_label, pred))) print(data_label.shape) print(data_input.shape) print(tf.shape(pred)) y = np.reshape(data_label, [256, 256]) t = np.reshape(data_input, [256, 256]) c = np.reshape(pred, [256, 256]) # sio.savemat("yuantu.mat", {'yuan': y}) # sio.savemat("chongjian.mat", {'jian': c}) ax1 = plt.subplot(1, 3, 1) plt.imshow(y, cmap='gray') ax2 = plt.subplot(1, 3, 2)