示例#1
0
def cmodel():
    model = Sequential()

    # Dense 1
    model.add(Dense(1024, input_shape=(90, )))
    model.add(Activation('relu'))
    model.add(Dropout(0.1))

    model.add(Dense(1024))
    model.add(BN())
    model.add(GN(0.1))
    model.add(Activation('relu'))

    model.add(Dense(512))
    model.add(BN())
    model.add(GN(0.1))
    model.add(Activation('relu'))

    model.add(Dense(num_classes))
    model.add(Activation('softmax'))

    model.summary()

    sgd = SGD(lr=0.0, momentum=0.9, decay=0.0, nesterov=False)
    model.compile(loss='categorical_crossentropy',
                  optimizer=sgd,
                  metrics=['accuracy'])
    return model
示例#2
0
def setModel(num_classes, shape):
    model = Sequential()
    model.add(Conv2D(32, (3, 3), padding='same', input_shape=shape))
    model.add(BN())
    model.add(GN(0.3))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Conv2D(64, (3, 3), padding='same'))
    model.add(BN())
    model.add(GN(0.3))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Conv2D(512, (3, 3), padding='same'))
    model.add(BN())
    model.add(GN(0.3))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Flatten())
    model.add(Dense(512))
    model.add(BN())
    model.add(GN(0.3))
    model.add(Activation('relu'))
    model.add(Dense(num_classes))
    model.add(Activation('softmax'))
    sgd = SGD(lr=0.01, momentum=0.9, decay=0.0, nesterov=False)
    model.compile(loss='categorical_crossentropy',
                  optimizer=sgd,
                  metrics=['accuracy'])
    return model
def model_keras():
    # crea el modeloTrue
    model = Sequential()
    # primera capa
    model.add(Dense(128, input_shape=(87, )))
    model.add(BN())
    model.add(GN(0.3))
    model.add(Activation('relu'))
    # segunda capa
    model.add(Dense(256))
    model.add(BN())
    model.add(GN(0.3))
    model.add(Activation('relu'))
    # tercera capa
    model.add(Dense(256))
    model.add(BN())
    model.add(GN(0.3))
    model.add(Activation('relu'))
    # capa de salida
    model.add(Dense(1))
    model.add(GN(0.3))
    model.add(Activation('relu'))

    # compilar el modelo
    model.compile(loss='mean_squared_error', optimizer='adam')
    return model
示例#4
0
def basic_model():  # 1024 512
    model = Sequential()
    model.add(Dense(2048, input_shape=(90, )))
    model.add(Activation('relu'))
    model.add(Dropout(0.1))

    model.add(Dense(1024))
    model.add(BN())
    model.add(GN(0.1))
    model.add(Activation('relu'))

    model.add(Dense(512))
    model.add(BN())
    model.add(GN(0.1))
    model.add(Activation('relu'))

    model.add(Dense(1))
    model.add(Activation('relu'))
    model.summary()

    adam = keras.optimizers.Adam(lr=0.01,
                                 beta_1=0.9,
                                 beta_2=0.999,
                                 epsilon=None,
                                 decay=0.0,
                                 amsgrad=False)

    model.compile(loss='mape', optimizer=adam, metrics=['mse'])
    return model
示例#5
0
def setModel(num_classes):
    model = Sequential()
    model.add(Dense(512, input_shape=(784,)))
    model.add(BN())
    model.add(GN(0.3))
    model.add(Activation('relu'))
    model.add(Dense(512))
    model.add(BN())
    model.add(GN(0.3))
    model.add(Activation('relu'))
    model.add(Dense(num_classes, activation='softmax'))
    sgd=SGD(lr=0.01, decay=1e-6, momentum=0.9)
    model.compile(loss='categorical_crossentropy',optimizer=sgd,metrics=['accuracy'])
    return model
示例#6
0
def CBGN(model, filters, lname, ishape=0):
    if (ishape != 0):
        model.add(Conv2D(filters, (3, 3), padding='same', input_shape=ishape))
    else:
        model.add(Conv2D(filters, (3, 3), padding='same'))

    model.add(BN())
    model.add(GN(0.3))
    model.add(Activation('relu'))

    model.add(Conv2D(filters, (3, 3), padding='same'))
    model.add(BN())
    model.add(GN(0.3))
    model.add(Activation('relu'))
    model.add(MaxPooling2D(pool_size=(2, 2), name=lname))

    return model
示例#7
0
def main():

    batch_size = 1024
    num_classes = 2
    epochs = 500


    #Load created npy arrays with vectorized images
    train_x = np.load("train_X_FOURTH_iter5.npy", allow_pickle=True)

    #Load labels
    train_y_orig = np.load("train_Y_FOURTH_iter5.npy", allow_pickle=True)

    train_x = train_x.astype("float32")
    train_y = train_y_orig.astype("float32")

    #Normalize data
    train_x /= 255

    #One-hot vector of labels
    num_classes = 2
    train_y = keras.utils.to_categorical(train_y, num_classes)


    #Data augmentation on the fly
    datagen = ImageDataGenerator(
        width_shift_range=0.1, #horizontal shift
        height_shift_range=0.1, #Vertical shift
        rotation_range=10, #Image rotation [-10, +10] degrees
        horizontal_flip=True #Flip the image
    )

    #Train the datagenerator over the train set
    datagen.fit(train_x)


    """
    
    ###### CONSTRUCTION OF MODEL ######

    """
    model = Sequential()
    model.add(Conv2D(8, (3, 3), padding='same', strides=1, input_shape=train_x.shape[1:]))
    model.add(Activation("relu"))

    model.add(Conv2D(16, (3, 3), padding='valid', strides=2))
    model.add(Activation("relu"))

    model.add(Conv2D(32, (3, 3), padding='valid', strides=1))
    model.add(Activation("relu"))

    model.add(Conv2D(16, (3, 3), padding='valid', strides=1))
    model.add(Activation("relu"))

    model.add(Conv2D(8, (3, 3), padding='valid', strides=1))
    model.add(Activation("relu"))

    model.add(Flatten())
    model.add(GN(0.3))
    model.add(Dense(512, activation="relu"))
    model.add(Dense(num_classes, activation="softmax"))

    model.summary()
    
    opt = SGD(lr=0.001, decay=1e-6, momentum=0.9)

    #Only if fine tunning a previously trained model. If so, reduce learning rate above.
    #model = load_model("model_faces_20_iter6_dev.hdf5")
    
    model.compile(loss='categorical_crossentropy',optimizer=opt,metrics=['accuracy'])

    save_model = keras.callbacks.ModelCheckpoint( "model_faces_20_iter6_dev_DA.hdf5", monitor='accuracy', verbose=1, save_best_only=True,  save_weights_only=False, mode='max')
    
    
    history=model.fit_generator(datagen.flow(train_x, train_y,batch_size),
                            steps_per_epoch=len(train_x) / batch_size,
                            epochs=epochs,
                            callbacks=[save_model],
                            verbose=1)
示例#8
0
                            height_shift_range=0.2,
                            horizontal_flip=False,
                            vertical_flip=True)
datagen.fit(x_train)

"""Create Model for training"""
shape = x_train.shape[1:]

model = Sequential()
model.add(BN(input_shape=shape))
model.add(Dropout(0.1))
model.add(Conv2D(32, (3, 3), padding='same', kernel_initializer=glorot_uniform(seed=0)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(BN())
model.add(GN(0.3))

model.add(Flatten())
model.add(Dense(256, kernel_initializer=glorot_uniform(seed=0)))
model.add(Activation('relu'))
model.add(BN())
model.add(Dropout(0.1))

model.add(Dense(128, kernel_initializer=glorot_uniform(seed=0)))
model.add(Activation('relu'))
model.add(BN())
model.add(Dropout(0.1))

model.add(Dense(1))
model.add(Activation('sigmoid'))
示例#9
0
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

## Data Augmentation with an ImageGenerator
datagen = ImageDataGenerator(width_shift_range=0.1,
                             height_shift_range=0.1,
                             horizontal_flip=False)

#Define the NN topology, a sequential model with 2 hidden layers

model = Sequential()

# noise in input
model.add(Reshape(target_shape=(784, ), input_shape=(28, 28, 1)))
model.add(GN(0.1))

model.add(Dense(1024, input_shape=(784, )))
model.add(BN())
model.add(GN(0.1))
model.add(Activation('relu'))
model.add(Dropout(0.02))

model.add(Dense(1024, input_shape=(784, )))
model.add(BN())
model.add(GN(0.1))
model.add(Activation('relu'))
model.add(Dropout(0.02))

model.add(Dense(1024))
model.add(BN())
示例#10
0
                             rotation_range=20,
                             zoom_range=[1.0, 1.2],
                             horizontal_flip=True)

## DEF CNN TOPOLOGY  1
model1 = Sequential()

model1 = CBGN(model1, 32, 'conv_model1_1', x_train.shape[1:])
model1 = CBGN(model1, 64, 'conv_model1_2')
model1 = CBGN(model1, 128, 'conv_model1_3')
model1 = CBGN(model1, 256, 'conv_model1_4')
model1 = CBGN(model1, 512, 'conv_model1_5')
model1.add(Flatten())
model1.add(Dense(512))
model1.add(BN())
model1.add(GN(0.3))
model1.add(Activation('relu'))
model1.add(Dropout(0.5))
model1.add(Dense(num_classes))
model1.add(Activation('softmax'))
model1.summary()

## OPTIM AND COMPILE
opt = SGD(lr=0.1, decay=1e-6)

model1.compile(loss='categorical_crossentropy',
               optimizer=opt,
               metrics=['accuracy'])


# DEFINE A LEARNING RATE SCHEDULER
示例#11
0
    'n_channels': 1,
    'n_classes': 2,
    'shuffle': True,
    'dir_faces': './face_images/',
    'dir_no_faces': './no_face_images/'
}

training_generator = DataGenerator(f_train, nf_train, **params)
test_generator = DataGenerator(f_test, nf_test, **params)
validation_generator = DataGenerator(f_val, nf_val, **params)

print("Building Model")
# Start building our model
model = Sequential()
model.add(BN(input_shape=(32, 32, 1)))
model.add(GN(gn))
model.add(Conv2D(32, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(BN())
model.add(GN(gn))
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(BN())
model.add(GN(gn * 1.5))
model.add(Conv2D(128, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))