def _filter_by_guidelines_multi(self, location):
        """Helper to filter by guidelines when one of the guideline hyperparameters is directly
        affected by a hyperparameter that is given as a space choice

        Parameters
        ----------
        location: Tuple
            Location of the hyperparameter space choice that affects the acceptable guideline values
            of a particular hyperparameter. In other words, this is the path of a hyperparameter,
            which, if changed, would change the expected default value of another hyperparameter

        Notes
        -----
        This is used for Keras Experiments when the `optimizer` value in a model's `compile_params`
        is given as a hyperparameter space choice. Each possible value of `optimizer` prescribes
        different default values for the `optimizer_params` argument, so special measures need to be
        taken to ensure the correct Experiments are declared to fit within the constraints"""
        _model_params = deepcopy(self.model_params)

        if location == ("model_init_params", "compile_params", "optimizer"):
            from keras.optimizers import get as k_opt_get

            update_location = ("model_init_params", "compile_params",
                               "optimizer_params")
            allowed_values = get_path(_model_params, location).bounds

            #################### Handle First Value (Dummy) ####################
            self._filter_by_guidelines()
            allowed_values = allowed_values[1:]

            #################### Handle Remaining Values ####################
            for allowed_val in allowed_values:
                updated_value = k_opt_get(allowed_val).get_config()

                def _visit(path, key, value):
                    """If `path` + `key` == `update_location`, return default for this choice. Else,
                    default_visit"""
                    if path + (key, ) == update_location:
                        return (key, updated_value)
                    return (key, value)

                self._filter_by_guidelines(
                    model_params=remap(_model_params, visit=_visit))

            self.similar_experiments = sorted(self.similar_experiments,
                                              key=lambda _: _[1],
                                              reverse=True)
        else:
            raise ValueError(
                "Received unhandled location: {}".format(location))
示例#2
0
    def does_match_init_params_guidelines_multi(self, exp_id, params, score,
                                                location) -> bool:
        """Check candidate compatibility with `model_init_params` template guidelines when a
        guideline hyperparameter is directly affected by another hyperparameter that is given as
        a space choice

        Parameters
        ----------
        exp_id: String
            Candidate Experiment ID
        params: Dict
            Candidate "model_init_params" to compare to the template in :attr:`model_params`
        score: Number
            Value of the candidate Experiment's target metric
        location: Tuple
            Location of the hyperparameter space choice that affects the acceptable guideline values
            of a particular hyperparameter. In other words, this is the path of a hyperparameter,
            which, if changed, would change the expected default value of another hyperparameter

        Returns
        -------
        Boolean
            True if candidate `params` match `model_init_params` guidelines. Else, False

        Notes
        -----
        This is used for Keras Experiments when the `optimizer` value in a model's `compile_params`
        is given as a hyperparameter space choice. Each possible value of `optimizer` prescribes
        different default values for the `optimizer_params` argument, so special measures need to be
        taken to ensure the correct Experiments are declared to fit within the constraints"""
        _model_params = deepcopy(self.model_params["model_init_params"])

        if location == ("compile_params", "optimizer"):
            from keras.optimizers import get as k_opt_get

            update_location = ("compile_params", "optimizer_params")
            # `update_location` = Path to hyperparameter whose default value depends on `location`
            allowed_values = get_path(_model_params, location).bounds
            # `allowed_values` = Good `("model_init_params", "compile_params", "optimizer")` values

            #################### Handle First Value (Dummy) ####################
            is_match = self.does_match_init_params_guidelines(
                exp_id, params, score)
            # The first value gets handled separately from the rest because the value at
            #   `update_location` is set according to `allowed_values[0]`. For the remaining
            #   `allowed_values`, we need to manually set `update_location` for each

            # If the first value was a match, the below `while` loop will never be entered because
            #   `is_match` is already True

            #################### Handle Remaining Values ####################
            allowed_val_index = 1
            while is_match is not True and allowed_val_index < len(
                    allowed_values):
                allowed_val = allowed_values[allowed_val_index]
                # Determine current default value for the dependent hyperparameter
                updated_val = k_opt_get(allowed_val).get_config()

                # Set value at `update_location` to `updated_val`, then check if params match
                def _visit(path, key, value):
                    """If `path` + `key` == `update_location`, return default for this choice. Else,
                    default_visit"""
                    if path + (key, ) == update_location:
                        return (key, updated_val)
                    return (key, value)

                is_match = self.does_match_init_params_guidelines(
                    exp_id,
                    params,
                    score,
                    template_params=remap(_model_params, visit=_visit))
                # If `is_match` is True, the loop stops and :attr:`match_status`'s value at `exp_id`
                #   for `does_match_init_params_guidelines` remains truthy

                allowed_val_index += 1
            return is_match
        else:
            raise ValueError(
                "Received unhandled location: {}".format(location))