示例#1
0
    def fit_line_type(self,
                      training_data_dir_path,
                      model_dir_path,
                      batch_size=None,
                      epochs=None,
                      test_size=None,
                      random_state=None):
        text_data_model = fit_text(training_data_dir_path,
                                   label_type='line_type')
        text_label_pairs = load_text_label_pairs(training_data_dir_path,
                                                 label_type='line_type')

        if batch_size is None:
            batch_size = 64
        if epochs is None:
            epochs = 20
        history = self.line_label_classifier.fit(
            text_data_model=text_data_model,
            model_dir_path=os.path.join(model_dir_path, 'line_type'),
            text_label_pairs=text_label_pairs,
            batch_size=batch_size,
            epochs=epochs,
            test_size=test_size,
            random_state=random_state)
        return history
示例#2
0
def main():
    random_state = 42
    np.random.seed(random_state)

    output_dir_path = './models'
    data_file_path = '../data/training_data'
    text_data_model = fit_text(data_file_path)
    text_label_pairs = load_text_label_pairs(data_file_path)

    classifier = WordVecCnn()
    batch_size = 64
    epochs = 20
    history = classifier.fit(text_data_model=text_data_model,
                             model_dir_path=output_dir_path,
                             text_label_pairs=text_label_pairs,
                             batch_size=batch_size, epochs=epochs,
                             test_size=0.3,
                             random_state=random_state)