def main(): fnet = SiameseFaceNet() fnet.vgg16_include_top = True model_dir_path = './models_1' image_dir_path = "./data/images" database = dict() database["aipengfei"] = [fnet.img_to_encoding(image_dir_path + "/aipengfei.png")] database["anyaru"] = [fnet.img_to_encoding(image_dir_path + "/anyaru.png")] database["baozhiqian"] = [fnet.img_to_encoding(image_dir_path + "/baozhiqian.png")] # database["danielle"] = [fnet.img_to_encoding(image_dir_path + "/danielle.png")] # database["younes"] = [fnet.img_to_encoding(image_dir_path + "/younes.jpg")] # database["tian"] = [fnet.img_to_encoding(image_dir_path + "/tian.jpg")] # database["andrew"] = [fnet.img_to_encoding(image_dir_path + "/andrew.jpg")] # database["kian"] = [fnet.img_to_encoding(image_dir_path + "/kian.jpg")] # database["dan"] = [fnet.img_to_encoding(image_dir_path + "/dan.jpg")] # database["sebastiano"] = [fnet.img_to_encoding(image_dir_path + "/sebastiano.jpg")] # database["bertrand"] = [fnet.img_to_encoding(image_dir_path + "/bertrand.jpg")] # database["kevin"] = [fnet.img_to_encoding(image_dir_path + "/kevin.jpg")] # database["felix"] = [fnet.img_to_encoding(image_dir_path + "/felix.jpg")] # database["benoit"] = [fnet.img_to_encoding(image_dir_path + "/benoit.jpg")] # database["arnaud"] = [fnet.img_to_encoding(image_dir_path + "/arnaud.jpg")] fnet.fit(database=database, model_dir_path=model_dir_path)
def main(): fnet = SiameseFaceNet() fnet.vgg16_include_top = True model_dir_path = './models' image_dir_path = "./data/images" database = dict() database["danielle"] = [fnet.img_to_encoding(image_dir_path + "/danielle.png")] database["younes"] = [fnet.img_to_encoding(image_dir_path + "/younes.jpg")] database["tian"] = [fnet.img_to_encoding(image_dir_path + "/tian.jpg")] database["andrew"] = [fnet.img_to_encoding(image_dir_path + "/andrew.jpg")] database["kian"] = [fnet.img_to_encoding(image_dir_path + "/kian.jpg")] database["dan"] = [fnet.img_to_encoding(image_dir_path + "/dan.jpg")] database["sebastiano"] = [fnet.img_to_encoding(image_dir_path + "/sebastiano.jpg")] database["bertrand"] = [fnet.img_to_encoding(image_dir_path + "/bertrand.jpg")] database["kevin"] = [fnet.img_to_encoding(image_dir_path + "/kevin.jpg")] database["felix"] = [fnet.img_to_encoding(image_dir_path + "/felix.jpg")] database["benoit"] = [fnet.img_to_encoding(image_dir_path + "/benoit.jpg")] database["arnaud"] = [fnet.img_to_encoding(image_dir_path + "/arnaud.jpg")] fnet.fit(database=database, model_dir_path=model_dir_path)
def createAug_1(): rootdir = 'data/stu01' list = os.listdir(rootdir) # 列出文件夹下所有的目录与文件 count = 0 for index in range(0, len(list)): #print (count) count = count + 1 path = rootdir + "/" + list[index] listname = os.listdir(path) if len(listname) == 0: print(list[index]) #os.makedirs( 'data/stu01/'+list[index]) for i in range(0, len(listname)): #print(path + '/' + listname[i]) imgpath = path + '/' + listname[0] img = cv2.imread(imgpath) # 这是一个PIL图像 #img =cv2.cvtColor( np.array(img), cv2.COLOR_BGR2RGB) #cv2.imwrite('data/stu01/' +list[index]+'/'+ listname[0], img) break if __name__ == '__main__': #createAug_1() fnet = SiameseFaceNet() fnet.vgg16_include_top = True saveTrainPkl(fnet) main(fnet) createAug()