示例#1
0
    def _test_base_tuner():
        def build_model(hp):
            return hp.Int("a", 1, 100)

        tuner = SimpleTuner(
            oracle=kt.oracles.RandomSearch(objective=kt.Objective(
                "score", "max"),
                                           max_trials=10),
            hypermodel=build_model,
            directory=tmp_dir,
        )
        tuner.search()

        # Only worker makes it to this point, server runs until thread stops.
        assert dist_utils.has_chief_oracle()
        assert not dist_utils.is_chief_oracle()
        assert isinstance(tuner.oracle,
                          kt.distribute.oracle_client.OracleClient)

        barrier.wait(60)

        # Model is just a score.
        scores = tuner.get_best_models(10)
        assert len(scores)
        assert scores == sorted(copy.copy(scores), reverse=True)
示例#2
0
    def __init__(
        self,
        oracle,
        hypermodel=None,
        directory=None,
        project_name=None,
        logger=None,
        overwrite=False,
    ):
        # Ops and metadata
        self.directory = directory or "."
        self.project_name = project_name or "untitled_project"
        if overwrite and tf.io.gfile.exists(self.project_dir):
            tf.io.gfile.rmtree(self.project_dir)

        if not isinstance(oracle, oracle_module.Oracle):
            raise ValueError(
                "Expected `oracle` argument to be an instance of `Oracle`. "
                f"Received: oracle={oracle} (of type ({type(oracle)}).")
        self.oracle = oracle
        self.oracle._set_project_dir(self.directory,
                                     self.project_name,
                                     overwrite=overwrite)

        # Run in distributed mode.
        if dist_utils.is_chief_oracle():
            # Blocks forever.
            oracle_chief.start_server(self.oracle)
        elif dist_utils.has_chief_oracle():
            # Proxies requests to the chief oracle.
            self.oracle = oracle_client.OracleClient(self.oracle)

        # To support tuning distribution.
        self.tuner_id = os.environ.get("KERASTUNER_TUNER_ID", "tuner0")

        self.hypermodel = hm_module.get_hypermodel(hypermodel)

        # Logs etc
        self.logger = logger
        self._display = tuner_utils.Display(oracle=self.oracle)

        self._populate_initial_space()

        if not overwrite and tf.io.gfile.exists(self._get_tuner_fname()):
            tf.get_logger().info("Reloading Tuner from {}".format(
                self._get_tuner_fname()))
            self.reload()
示例#3
0
    def _test_random_search():
        def build_model(hp):
            model = keras.Sequential()
            model.add(keras.layers.Dense(3, input_shape=(5, )))
            for i in range(hp.Int("num_layers", 1, 3)):
                model.add(
                    keras.layers.Dense(hp.Int("num_units_%i" % i, 1, 3),
                                       activation="relu"))
            model.add(keras.layers.Dense(1, activation="sigmoid"))
            model.compile("sgd", "binary_crossentropy")
            return model

        x = np.random.uniform(-1, 1, size=(2, 5))
        y = np.ones((2, 1))

        tuner = kt.tuners.RandomSearch(
            hypermodel=build_model,
            objective="val_loss",
            max_trials=10,
            directory=tmp_dir,
        )

        # Only worker makes it to this point, server runs until thread stops.
        assert dist_utils.has_chief_oracle()
        assert not dist_utils.is_chief_oracle()
        assert isinstance(tuner.oracle,
                          kt.distribute.oracle_client.OracleClient)

        tuner.search(x, y, validation_data=(x, y), epochs=1, batch_size=2)

        # Suppress warnings about optimizer state not being restored by tf.keras.
        tf.get_logger().setLevel(logging.ERROR)

        trials = tuner.oracle.get_best_trials(2)
        assert trials[0].score <= trials[1].score

        models = tuner.get_best_models(2)
        assert models[0].evaluate(x, y) <= models[1].evaluate(x, y)