示例#1
0
    def _delete_channels(self,
                         node,
                         inputs,
                         input_masks,
                         channels=None,
                         layer_name=None):
        """Delete selected channels of node.outbound_layer. Add it to the graph.
        """
        old_layer = node.outbound_layer
        old_layer_output = utils.single_element(node.output_tensors)
        # Create a mask to propagate the deleted channels to downstream layers
        new_delete_mask = self._make_delete_mask(old_layer, channels)

        if len(set(channels)) == getattr(old_layer,
                                         utils.get_channels_attr(old_layer)):
            self._replace_tensors[old_layer_output] = (None, new_delete_mask)
            return None

        # If this layer has already been operated on, use the cached copy of
        # the new layer. Otherwise, apply the inbound delete mask and
        # delete channels to obtain the new layer
        if old_layer in self._new_layers_map.keys():
            new_layer = self._new_layers_map[old_layer]
        else:
            temp_layer, new_mask = self._apply_delete_mask(node, input_masks)
            # This call is needed to initialise input_shape and output_shape
            temp_layer(utils.single_element(inputs))
            new_layer = self._delete_channel_weights(temp_layer, channels)
            if layer_name:
                new_layer.name = layer_name
            self._new_layers_map[old_layer] = new_layer
        new_output = new_layer(utils.single_element(inputs))
        # Replace the original layer's output with the modified layer's output
        self._replace_tensors[old_layer_output] = (new_output, new_delete_mask)
示例#2
0
def layer_test_helper_flatten_1d(layer, channel_index):
    # This should test that the output is the correct shape so it should pass
    # into a Dense layer rather than a Conv layer.
    # The weighted layer is the previous layer,
    # Create model
    main_input = Input(shape=list(random.randint(10, 20, size=2)))
    x = Conv1D(3, 3)(main_input)
    x = layer(x)
    x = Flatten()(x)
    main_output = Dense(5)(x)
    model = Model(inputs=main_input, outputs=main_output)

    # Delete channels
    del_layer_index = 1
    next_layer_index = 4
    del_layer = model.layers[del_layer_index]
    surgeon = Surgeon(model)
    surgeon.add_job("delete_channels", del_layer, channels=channel_index)
    new_model = surgeon.operate()
    new_w = new_model.layers[next_layer_index].get_weights()

    # Calculate next layer's correct weights
    flat_sz = np.prod(layer.get_output_shape_at(0)[1:])
    channel_count = getattr(del_layer, utils.get_channels_attr(del_layer))
    channel_index = [i % channel_count for i in channel_index]
    delete_indices = [
        x + i for i in range(0, flat_sz, channel_count) for x in channel_index
    ]

    correct_w = model.layers[next_layer_index].get_weights()
    correct_w[0] = np.delete(correct_w[0], delete_indices, axis=0)

    assert weights_equal(correct_w, new_w)
示例#3
0
def layer_test_helper_2d_global(layer, channel_index, data_format):
    # This should test that the output is the correct shape so it should pass
    # into a Dense layer rather than a Conv layer.
    # The weighted layer is the previous layer,
    # Create model
    main_input = Input(shape=list(random.randint(10, 20, size=3)))
    x = Conv2D(3, [3, 3], data_format=data_format)(main_input)
    x = layer(x)
    main_output = Dense(5)(x)
    model = Model(inputs=main_input, outputs=main_output)

    # Delete channels
    del_layer_index = 1
    next_layer_index = 3
    del_layer = model.layers[del_layer_index]
    new_model = operations.delete_channels(model, del_layer, channel_index)
    new_w = new_model.layers[next_layer_index].get_weights()

    # Calculate next layer's correct weights
    channel_count = getattr(del_layer, utils.get_channels_attr(del_layer))
    channel_index = [i % channel_count for i in channel_index]
    correct_w = model.layers[next_layer_index].get_weights()
    correct_w[0] = np.delete(correct_w[0], channel_index, axis=0)

    assert weights_equal(correct_w, new_w)
示例#4
0
def test_delete_channels_flatten(channel_index, data_format):
    # Create model
    main_input = Input(shape=list(random.randint(4, 10, size=3)))
    x = Conv2D(3, [3, 3], data_format=data_format)(main_input)
    x = Flatten()(x)
    main_output = Dense(5)(x)
    model = Model(inputs=main_input, outputs=main_output)

    # Delete channels
    layer_index = 1
    next_layer_index = 3
    layer = model.layers[layer_index]
    new_model = operations.delete_channels(model, layer, channel_index)
    new_w = new_model.layers[next_layer_index].get_weights()

    # Calculate next layer's correct weights
    flat_sz = np.prod(layer.output_shape[1:])
    channel_count = getattr(layer, utils.get_channels_attr(layer))
    channel_index = [i % channel_count for i in channel_index]
    if data_format == 'channels_first':
        delete_indices = [x*flat_sz//channel_count + i for x in channel_index
                          for i in range(0, flat_sz//channel_count, )]
    elif data_format == 'channels_last':
        delete_indices = [x + i for i in range(0, flat_sz, channel_count)
                          for x in channel_index]
    else:
        raise ValueError
    correct_w = model.layers[next_layer_index].get_weights()
    correct_w[0] = np.delete(correct_w[0], delete_indices, axis=0)

    assert weights_equal(correct_w, new_w)
示例#5
0
def test_delete_channels_merge_concatenate(channel_index, data_format):
    # This should test that the output is the correct shape so it should pass
    # into a Dense layer rather than a Conv layer.
    # The weighted layer is the previous layer,
    # Create model
    if data_format == "channels_first":
        axis = 1
    elif data_format == "channels_last":
        axis = -1
    else:
        raise ValueError

    input_shape = list(random.randint(10, 20, size=3))
    input_1 = Input(shape=input_shape)
    input_2 = Input(shape=input_shape)
    x = Conv2D(3, [3, 3], data_format=data_format, name="conv_1")(input_1)
    y = Conv2D(3, [3, 3], data_format=data_format, name="conv_2")(input_2)
    x = Concatenate(axis=axis, name="cat_1")([x, y])
    x = Flatten()(x)
    main_output = Dense(5, name="dense_1")(x)
    model = Model(inputs=[input_1, input_2], outputs=main_output)
    old_w = model.get_layer("dense_1").get_weights()

    # Delete channels
    layer = model.get_layer("cat_1")
    del_layer = model.get_layer("conv_1")
    surgeon = Surgeon(model, copy=True)
    surgeon.add_job("delete_channels", del_layer, channels=channel_index)
    new_model = surgeon.operate()
    new_w = new_model.get_layer("dense_1").get_weights()

    # Calculate next layer's correct weights
    flat_sz = np.prod(layer.get_output_shape_at(0)[1:])
    channel_count = getattr(del_layer, utils.get_channels_attr(del_layer))
    channel_index = [i % channel_count for i in channel_index]
    if data_format == "channels_first":
        delete_indices = [
            x * flat_sz // 2 // channel_count + i for x in channel_index
            for i in range(
                0,
                flat_sz // 2 // channel_count,
            )
        ]
    elif data_format == "channels_last":
        delete_indices = [
            x + i for i in range(0, flat_sz, channel_count * 2)
            for x in channel_index
        ]
    else:
        raise ValueError
    correct_w = model.get_layer("dense_1").get_weights()
    correct_w[0] = np.delete(correct_w[0], delete_indices, axis=0)

    assert weights_equal(correct_w, new_w)
示例#6
0
def recursive_test_helper(layer, channel_index):
    main_input = Input(shape=[32, 10])
    x = layer(main_input)
    x = GRU(4, return_sequences=False)(x)
    main_output = Dense(5)(x)
    model = Model(inputs=main_input, outputs=main_output)

    # Delete channels
    del_layer_index = 1
    next_layer_index = 2
    del_layer = model.layers[del_layer_index]
    new_model = operations.delete_channels(model, del_layer, channel_index)
    new_w = new_model.layers[next_layer_index].get_weights()

    # Calculate next layer's correct weights
    channel_count = getattr(del_layer, utils.get_channels_attr(del_layer))
    channel_index = [i % channel_count for i in channel_index]
    correct_w = model.layers[next_layer_index].get_weights()
    correct_w[0] = np.delete(correct_w[0], channel_index, axis=0)

    assert weights_equal(correct_w, new_w)
示例#7
0
    def _delete_channel_weights(self, layer, channel_indices):
        """Delete channels from layer and remove the corresponding weights.

        Arguments:
            layer: A layer whose channels are to be deleted
            channel_indices: The indices of the channels to be deleted.

        Returns:
            A new layer with the channels and corresponding weights deleted.
        """
        layer_config = layer.get_config()
        channels_attr = utils.get_channels_attr(layer)
        channel_count = layer_config[channels_attr]
        # Check inputs
        if any([i + 1 > channel_count for i in channel_indices]):
            raise ValueError(
                'Channels_index value(s) out of range. '
                'This layer only has {0} channels.'.format(channel_count))
        print('Deleting {0}/{1} channels from layer: {2}'.format(
            len(channel_indices), channel_count, layer.name))
        # numpy.delete ignores negative indices in lists: wrap indices
        channel_indices = [i % channel_count for i in channel_indices]

        # Reduce layer channel count in config.
        layer_config[channels_attr] -= len(channel_indices)

        # Delete weights corresponding to deleted channels from config.
        # Except for recurrent layers, the weights' channels dimension is last.
        # Each recurrent layer type has a different internal weights layout.
        if layer.__class__.__name__ == 'SimpleRNN':
            weights = [
                np.delete(w, channel_indices, axis=-1)
                for w in layer.get_weights()
            ]
            weights[1] = np.delete(weights[1], channel_indices, axis=0)
        elif layer.__class__.__name__ == 'GRU':
            # Repeat the channel indices for all internal GRU weights.
            channel_indices_gru = [
                layer.units * m + i for m in range(3) for i in channel_indices
            ]
            weights = [
                np.delete(w, channel_indices_gru, axis=-1)
                for w in layer.get_weights()
            ]
            weights[1] = np.delete(weights[1], channel_indices, axis=0)
        elif layer.__class__.__name__ == 'LSTM':
            # Repeat the channel indices for all interal LSTM weights.
            channel_indices_lstm = [
                layer.units * m + i for m in range(4) for i in channel_indices
            ]
            weights = [
                np.delete(w, channel_indices_lstm, axis=-1)
                for w in layer.get_weights()
            ]
            weights[1] = np.delete(weights[1], channel_indices, axis=0)
        else:
            weights = [
                np.delete(w, channel_indices, axis=-1)
                for w in layer.get_weights()
            ]
        layer_config['weights'] = weights

        # Create new layer from the modified configuration and return it.
        return type(layer).from_config(layer_config)